98%
921
2 minutes
20
In this study, three expression vectors encoding unmodified glycoproteins E1 and E2 from H77 (1a), Hebei (1b) and JFH1 (2a) strains were constructed to form pVRC-H77-E1E2, pVRC-HeBei-E1E2 and pVRC-JFH1-E1E2 expressing constructs. The protein expression was confirmed by immunofluorescene assay(IFA) and Western blot. The Lentiviral vector has the ability to package the cellular membrane into pseudo-particles. The plasmid expressing HCV E1-E2 glycoproteins in native form was co-transfected into 293FT cells with a lentiviral packaging plasmid (pHR'CMV delta R8.2)and a self-inactivated (SIN) transfer plasmid (pCS-CG) containing a reporter EGFP gene to produce infectious HCV pseudo-particles(pp). Flow cytometry assays showed that the HCVpp could infect Huh7 and Huh7-CD81, and the infectivity in Huh7-CD81 was about 2-3 times higher than that in Huh7 cells. Meanwhile, HCVpp could neither infect non-liver cells, for example, the 293 cells, nor HepG2 cell . Titration of HCVpp by p24 ELISA assay or infection assay showed that this HCVpp may contain 5-25 ng/mL p24 or 10(4)-10(5) TU (transducing unit)/ ml. An in vitro HCV neutralizing assays based on HCVpp (1a, 1b, 2a) were then established using AP33, a monoclone antibody with cross-neutralizing ability to different HCV strains. The neutralizing ability of the antibodies from HCV infected patients was further studied with this HCVpp system. In summary, three kinds of HCVpp (1a, 1b, 2a subtype) were successfully developed; In vitro HCV neutralizing assays based on HCVpp and SIN lentiviral system were established. This system paves a way for characterization of early steps of HCV infection (host tropisms, receptor binding, membrane fusion, et al. ) or screening anti-HCV drugs (such as inhibitor to virus entry). This system can be further applied to assess the human immune responses in HCV patients or evaluate HCV vaccine candidates.
Download full-text PDF |
Source |
---|
Pediatr Transplant
November 2025
Department of Medicine, Division of Nephrology, Columbia University Vagelos College of Physicians & Surgeons, New York, New York, USA.
Background: Changes to the calculation of the Kidney Donor Profile Index (KDPI) have lowered the KDPI of hepatitis C (HCV+) donor kidneys; therefore, increasing the proportion of pediatric-prioritized kidneys that are HCV+. We aimed to study consent rates for HCV+ kidneys among pediatric kidney transplant candidates.
Methods: We identified pediatric candidates waitlisted from 2019 to 2024 and excluded those who received a living donor transplant.
Med J Aust
September 2025
QIMR Berghofer, Brisbane, QLD.
Objective: To determine the cumulative incidence of overall and cause-specific mortality among Queensland residents admitted to hospital with cirrhosis during 2007-22, by cirrhosis aetiology.
Study Design: Retrospective cohort study; analysis of linked Queensland Hospital Admitted Patient Data Collection and Queensland Registry of Births, Deaths and Marriages data.
Setting, Participants: Adult Queensland residents (18 years or older) admitted to Queensland hospitals with cirrhosis during 1 July 2007 - 31 December 2022.
PLoS One
September 2025
Chongqing Blood Center, Jiulongpo, Chongqing, China.
Background: In 2012, China raised the upper age restriction for blood donors from 55 to 60 years old. This study analyzed the impact of raising the upper age restriction on whole blood donor health, contribution to blood supply, and safety of blood.
Methods: The blood collection and donor hemovigilance data of the Chongqing Blood Center from 2012 to 2023 were analyzed to evaluate the safety of elderly blood donors.
Hepatol Res
September 2025
Department of Gastroenterology and Hepatology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan.
Aim: Hepatitis C virus (HCV) infection remains a global health concern. Although the World Health Organization (WHO) proposed a strategy to eliminate HCV by 2030, Japan faces challenges owing to limited access and insufficient support for high-risk populations. Previously, HCV diagnoses required a two-step process, delaying results and increasing costs.
View Article and Find Full Text PDFVirology
September 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:
Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.
View Article and Find Full Text PDF