Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Plasmepsins (Plm) II (EC number: 3.4.23.39) and IV (EC number: 3.4.23.B14) are aspartic proteases present in the food vacuole of the malaria parasite Plasmodium falciparum and are involved in host hemoglobin degradation. Based on our established efficient synthetic sequence, a series of inhibitors for Plm II and IV has been synthesized bearing a 2,3,4,7-tetrahydro-1H-azepine scaffold as the core structural element. During the computational design cycle, thorough investigations were carried out in order to find a reasonable theoretical binding mode for Plm II and IV. The conformation of Plm II in the crystal structure (PDB code: 1LF2) provides a good starting geometry for our virtual screening approach. In contrast, the only available co-crystal structure for Plm IV of P. falciparum (PDB code: 1LS5) appears inappropriate for inhibitor design. Therefore, a homology model was constructed based on the Plm II 1LF2 structure. A combinatorial docking run using FlexX(c) suggested compounds which, after synthesis, turned out to exhibit affinities in the sub-micromolar range. The observed structure-activity relationships of the synthesized compounds confirm the assumed binding mode for Plm II and IV. The best-binding inhibitors designed for Plm II and IV are devoid of any inhibitory potency against human cathepsin D (EC number: 3.4.23.5).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.200700270 | DOI Listing |