Publications by authors named "Torsten Luksch"

Syngenta responded to significant agricultural losses caused by plant-parasitic nematodes by initiating a next-generation nematicide discovery program. This effort led to the development of TYMIRIUM® technology, a nematicide and fungicide solution containing Cyclobutrifluram as its active ingredient. In 2022, this innovative solution received its first registration.

View Article and Find Full Text PDF

The world is on the verge of a new industrial revolution, and language models are poised to play a pivotal role in this transformative era. Their ability to offer intelligent insights and forecasts has made them a valuable asset for businesses seeking a competitive advantage. The chemical industry, in particular, can benefit significantly from harnessing their power.

View Article and Find Full Text PDF

Succinate dehydrogenase inhibitor (SDHI) fungicides are widely used for the control of a broad range of fungal diseases. This has been the most rapidly expanding fungicide group in terms of new molecules discovered and introduced for agricultural use over the past fifteen years. A particular pattern of differential sensitivity (resistance) to the stretched heterocycle amide SDHIs (SHA-SDHIs), a subclass of chemically-related SDHIs, was observed in naïve Zymoseptoria tritici populations not previously exposed to these chemicals.

View Article and Find Full Text PDF

Background: Protein kinases have been shown to be key drug targets, especially in the area of oncology. It is of interest to explore the possibilities of protein kinases as a potential target class in Plasmodium spp., the causative agents of malaria.

View Article and Find Full Text PDF

The enzyme N-myristoyltransferase (NMT) from Trypanosoma brucei has been validated both chemically and biologically as a potential drug target for human African trypanosomiasis. We previously reported the development of some very potent compounds based around a pyrazole sulfonamide series, derived from a high-throughput screen. Herein we describe work around thiazolidinone and benzomorpholine scaffolds that were also identified in the screen.

View Article and Find Full Text PDF

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection.

View Article and Find Full Text PDF

Glycogen synthase kinase 3 (GSK3) is a genetically validated drug target for human African trypanosomiasis (HAT), also called African sleeping sickness. We report the synthesis and biological evaluation of aminopyrazole derivatives as Trypanosoma brucei GSK3 short inhibitors. Low nanomolar inhibitors, which had high selectivity over the off-target human CDK2 and good selectivity over human GSK3β enzyme, have been prepared.

View Article and Find Full Text PDF

Crop protection chemistry has come a long way from its "alchemic" beginnings in the late 19th century to a high-tech science that supports the sustainable production of food, feed, and fiber for a rapidly growing population. Cutting-edge developments in the design and synthesis of agrochemicals help to tackle today's challenges of weed and pest resistance, higher regulatory safety margins, and higher cost of goods with the invention of selective, environmentally benign, low use rate, and cost-effective active ingredients.

View Article and Find Full Text PDF

Human African trypanosomiasis (HAT) is a life-threatening disease with approximately 30 000-40 000 new cases each year. Trypanosoma brucei protein kinase GSK3 short (TbGSK3) is required for parasite growth and survival. Herein we report a screen of a focused kinase library against T.

View Article and Find Full Text PDF

New drugs are urgently needed for the treatment of tropical parasitic diseases such as leishmaniasis and human African trypanosomiasis (HAT). This work involved a high-throughput screen of a focussed kinase set of ~3400 compounds to identify potent and parasite-selective inhibitors of an enzymatic Leishmania CRK3-cyclin 6 complex. The aim of this study is to provide chemical validation that Leishmania CRK3-CYC6 is a drug target.

View Article and Find Full Text PDF

Dynamic covalent chemistry uses reversible chemical reactions to set up an equilibrating network of molecules at thermodynamic equilibrium, which can adjust its composition in response to any agent capable of altering the free energy of the system. When the target is a biological macromolecule, such as a protein, the process corresponds to the protein directing the synthesis of its own best ligand. Here, we demonstrate that reversible acylhydrazone formation is an effective chemistry for biological dynamic combinatorial library formation.

View Article and Find Full Text PDF

Due to the important role that aspartic proteases play in many patho-physiological processes, they have intensively been targeted by modern drug development. However, up to now, only for two family members, renin and HIV protease, approved drugs are available. Inhibitor development, mostly guided by mimicking the natural peptide substrates, resulted in very potent inhibitors for several targets, but the pharmacokinetic properties of these compounds were often not optimal.

View Article and Find Full Text PDF

A synthetic concept is presented that allows the construction of peptide isostere libraries through polymer-supported C-acylation reactions. A phosphorane linker reagent is used as a carbanion equivalent; by employing MSNT as a coupling reagent, the C-acylation can be conducted without racemization. Diastereoselective reduction was effected with L-selectride.

View Article and Find Full Text PDF