Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The chemokine CXCL12 promotes migration of human leukocytes, hematopoietic progenitors, and tumor cells. The binding of CXCL12 to its receptor CXCR4 triggers Gi protein signals for motility and integrin activation in many cell types. CXCR7 is a second, recently identified receptor for CXCL12, but its role as an intrinsic G-protein-coupled receptor (GPCR) has been debated. We report that CXCR7 fails to support on its own any CXCL12-triggered integrin activation or motility in human T lymphocytes or CD34(+) progenitors. CXCR7 is also scarcely expressed on the surface of both cell types and concentrates right underneath the plasma membrane with partial colocalization in early endosomes. Nevertheless, various specific CXCR7 blockers get access to this pool and attenuate the ability of CXCR4 to properly rearrange by surface-bound CXCL12, a critical step in the ability of the GPCR to trigger optimal CXCL12-mediated stimulation of integrin activation in T lymphocytes as well as in CD34(+) cells. In contrast, CXCL12-triggered CXCR4 signaling to early targets, such as Akt as well as CXCR4-mediated chemotaxis, is insensitive to identical CXCR7 blocking. Our findings suggest that although CXCR7 is not an intrinsic signaling receptor for CXCL12 on lymphocytes or CD34(+) cells, its blocking can be useful for therapeutic interference with CXCR4-mediated activation of integrins.

Download full-text PDF

Source
http://dx.doi.org/10.1189/jlb.0208088DOI Listing

Publication Analysis

Top Keywords

integrin activation
16
lymphocytes cd34+
12
cd34+ cells
12
cxcl12-triggered integrin
8
motility human
8
human lymphocytes
8
cell types
8
receptor cxcl12
8
cxcr7
7
activation
5

Similar Publications

The white matter of the spinal cord is essential for sensory and motor signaling, and its proper development is crucial for establishing functional neuronal circuits. However, the mechanisms underlying white matter formation remain incompletely understood. We hypothesized that the extracellular matrix, particularly laminins, plays a key role in this process.

View Article and Find Full Text PDF

Touch of youth: Mechanosensing expands stem-like CAR-T cells.

Immunity

September 2025

Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. Electronic address:

In this issue of Immunity, Lv et al. develop a new CAR-T cell culture system that uses integrin mechanical signaling to boost CAR-T proliferation while preserving stemness, pointing out a new direction of CAR-T manufacturing.

View Article and Find Full Text PDF

Platelet integrin αIIbβ3 is the final common effector of arterial thrombosis: it switches from a low-affinity to a high-affinity state, binds fibrinogen, and initiates the outside-in signals that stabilize a growing clot. Calcium- and integrin-binding protein 1 (CIB1) emerged as the first endogenous partner of the αIIb cytoplasmic tail and is now recognized as a dual-role adaptor. At rest, Ca-free CIB1 tethers the inner membrane clasp and restrains premature integrin activation; after ligand engagement, Ca-bound CIB1 docks onto αIIb, recruits focal-adhesion kinase and amplifies Src-dependent cytoskeletal remodeling.

View Article and Find Full Text PDF

Integrins bind ligands between their alpha (α) and beta (β) subunits and transmit signals through conformational changes. Early in chordate evolution, some α subunits acquired an "inserted" (I) domain that expanded integrin's ligand-binding repertoire but obstructed the ancestral ligand pocket, seemingly blocking conventional integrin activation. Here, we compare cryo-electron microscopy structures of apo and ligand-bound states of the I domain-containing αEβ integrin and the I domain-lacking αβ integrin to illuminate how the I domain intrinsically mimics an extrinsic ligand to preserve integrin function.

View Article and Find Full Text PDF

Defining the Role of Integrins in Melanoblast Migration .

Mol Biol Cell

September 2025

Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

During embryonic development, neural crest-derived melanoblasts, which are precursors of pigment-producing melanocytes, disperse throughout the skin by long-range cell migration that requires adhesion to the ECM. Members of the integrin family of cell-ECM adhesion receptors are thought to contribute to melanocyte migration . However, due to the functional redundancy between different integrin heterodimers, the precise role of integrins in melanoblast migration, as well as the mechanisms that regulate them in this process, especially in contexts, remain poorly understood.

View Article and Find Full Text PDF