Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

After myocardial infarction (MI), the heart may undergo progressive ventricular remodeling, resulting in a deterioration of cardiac function. TGF-beta is a key cytokine that both initiates and terminates tissue repair, and its sustained production underlies the development of tissue fibrosis, particularly after MI. We investigated the effects of a novel orally active specific inhibitor of the TGF-beta receptor 1 (SD-208) in an experimental model of MI. Mice underwent ligation of the left coronary artery to induce MI and were subsequently treated for 30 d after infarction with either SD-208 or a vehicle control. Blockade of TGF-beta signaling reduced mean arterial pressure in all groups. SD-208 treatment after MI resulted in a trend for reduced ventricular and renal gene expression of TGF-beta-activated kinase-1 (a downstream modulator of TGF-beta signaling) and a significant decrease in collagen 1, in association with a marked decrease in cardiac mass. Post-MI SD-208 treatment significantly reduced circulating levels of plasma renin activity as well as down-regulating the components of the cardiac and renal renin-angiotensin system (angiotensinogen, angiotensin converting enzyme, and angiotensin II type I receptor). Our findings indicate that blockade of the TGF-beta signaling pathway results in significant amelioration of deleterious cardiac remodeling after infarction.

Download full-text PDF

Source
http://dx.doi.org/10.1210/en.2008-0165DOI Listing

Publication Analysis

Top Keywords

tgf-beta signaling
12
renin-angiotensin system
8
cardiac remodeling
8
myocardial infarction
8
blockade tgf-beta
8
sd-208 treatment
8
cardiac
5
tgf-beta
5
transforming growth
4
growth factor-beta
4

Similar Publications

Purpose: We aimed to compare the effects of atelocollagen (AC) and individual growth factors on the expression of key molecular markers associated with tendon healing.

Methods: C2C12 myoblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 5% fetal bovine serum (FBS) and treated with 1 nM or 10 nM of Atelocollagen (AC), bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1), or vascular endothelial growth factor (VEGF) for 5 days. After 5 days of treatment, cells were harvested from the culture medium, and Western blot analysis was performed to quantify the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), Collagen type I (Col I), Collagen type Ⅲ (Col Ⅲ), and Tenascin C (TnC).

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF

Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).

View Article and Find Full Text PDF

Chronic stress-induced cardiac hypertrophy remains a critical precursor to heart failure, with current therapies limited by incomplete mechanistic targeting. Cyclin-dependent kinases (CDKs), pivotal regulators of cell cycle and stress signaling, are emerging therapeutic targets in cardiovascular pathologies. Using bioinformatics analysis of human hypertrophic cardiomyopathy datasets (GSE5500, GSE136308) and a murine transverse aortic constriction (TAC) model, we investigated the therapeutic effects of the CDK inhibitor R547 (10 mg/kg, intraperitoneal every 3 days) on pressure overload-induced cardiac remodeling.

View Article and Find Full Text PDF

Cardiovascular diseases are increasingly recognized as chronic disorders driven by a complex interplay between inflammation and fibrosis. In this review, we elucidate emerging mechanisms that govern the transition from acute inflammation to pathological fibrosis, with particular focus on cellular crosstalk between neutrophils, macrophages, fibroblasts, and myofibroblasts. We explore how dysregulated immune responses and extracellular matrix (ECM) remodeling sustain a pathogenic feedback loop, promoting myocardial stiffening and adverse cardiac remodeling.

View Article and Find Full Text PDF