98%
921
2 minutes
20
Flavonoids are polyphenols frequently consumed in the diet which have been suggested to exert a number of beneficial actions on human health, including intestinal anti-inflammatory activity. Their properties have been studied in numerous cell types, but little is known about their effect on leukocyte biology. We have selected 9 flavonoids (extended to 14 flavonoids plus the related polyphenol resveratrol in some cases) with different structural features to characterize their effects on leukocyte viability, proliferation, and expression of cyclooxygenase 2 (EC 1.14.99.1), inducible nitric oxide synthase (iNOS, EC 1.14.13.39) and proinflammatory cytokines (TNF-alpha, IFN-gamma, IL-2), as well as to elucidate the structural requirements in each case. Quiescent and concanavalin A-stimulated rat splenocytes were used as a model. Flavonoids (50 microM) had a dramatic inhibitory effect on cytokine secretion. Inducible nitric oxide synthase expression was also blocked largely by some flavonoids, especially quercetin, luteolin and apigenin, while cyclooxygenase 2 was downregulated only by apigenin, diosmetin and quercetin. Apigenin, luteolin, genistein and quercetin had substantial cytotoxic/proapoptotic effects, while chrysin, daidzein, hesperetin and kaempferol did not reduce cell viability. In contrast, all flavonoids had powerful antiproliferative effects. However, none of the compounds activated caspase 3 (EC 3.4.22.56), but actually lowered caspase 3 activation and expression in concanavalin A-stimulated cells. The activity of the quercetin metabolite isorhamnetin was generally lower than that of the parent compound. We conclude that flavonoids have powerful effects on lymphocytes with distinct structural requirements that may contribute to their intestinal anti-inflammatory activity. The bioactivity of orally administered flavonoids may be dampened by biotransformation in vivo, particularly in extraintestinal sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2008.06.001 | DOI Listing |
Int J Parasitol Drugs Drug Resist
August 2025
Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India. Electronic address:
Antimalarial resistance is a primary challenge in the treatment of malaria. The ongoing search for novel drug sources remains a critical strategy for addressing this issue. This study evaluated the blood stage antiplasmodial and cytotoxic activities of the crude extract and fractions obtained from Lepidobotrys staudtii.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
School of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China. Electronic address:
The accumulation of antibiotics in soil threatens agricultural ecosystems and human health. Oxytetracycline (OTC), a plant-absorbable antibiotic, generally exerts inhibitory effects on plant growth. Selenium (Se) plays a crucial role in safeguarding plants resistant to a variety of abiotic stresses.
View Article and Find Full Text PDFPlant Physiol Biochem
August 2025
College of Enology, Northwest A&F University, Yangling, China; Heyang Grape Experiment and Demonstration Station, Northwest A&F University, Heyang, 715300, China; Shaanxi Engineering Research Center for Viti Viniculture, 712100, Yangling, China. Electronic address:
Postharvest deterioration in table grapes, driven by fungal pathogens and oxidative damage, remains a critical concern. This study evaluated the synergistic potential of 24-epibrassinolide (EBR) and Metschnikowia pulcherrima (Y) in preserving the quality of Red Globe grapes. The combined treatment of EBR and Y (YBR) significantly enhanced phenolic biosynthesis, elevating flavonoids and anthocyanin by 27.
View Article and Find Full Text PDFChem Biodivers
September 2025
Instituto De Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
Mezilaurus duckei, a Brazilian endemic tree species found exclusively in the Amazon Rainforest, is primarily exploited for timber in construction. Due to its endangered status, this study aimed to investigate the chemical profile and biological properties of the ethanolic extract and its phases derived from M. duckei leaves.
View Article and Find Full Text PDFChem Biodivers
September 2025
Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, Laboratory of Anti-Allergy Functional Compounds, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
Autoimmune diseases (AIDs), defined by irregularities in immune system function, pose a substantial health challenge worldwide, impacting millions with persistent and frequently debilitating conditions. Conventional treatments, such as glucocorticoid-based immunosuppressive therapies, are associated with notable drawbacks and limitations. In response to these difficulties, recent scientific efforts have increasingly focused on natural compounds as potential therapeutic agents.
View Article and Find Full Text PDF