Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The focus of the studies presented in the preceding companion paper (Part A: Review) and here (Part B: Applications) is on defining representative emission rates from vegetation for determining the roles of biogenic volatile organic compound (BVOC) emissions in atmospheric chemistry and aerosol processes. The review of previously published procedures for identifying and quantifying BVOC emissions has revealed a wide variety of experimental methods used by various researchers. Experimental details become increasingly critical for quantitative emission measurements of low volatility monoterpenes (MT) and sesquiterpenes (SQT). These compounds are prone to be lost inadvertently by uptake to materials in contact with the sample air or by reactions with atmospheric oxidants. These losses become more prominent with higher molecular weight compounds, potentially leading to an underestimation of their emission rates. We present MT and SQT emission rate data from numerous experiments that include 23 deciduous tree species, 14 coniferous tree species, 8 crops, and 2 shrubs. These data indicate total, normalized (30 degrees C) basal emission rates from <10 to 5600ngCg(-1)h(-1) for MT, and from <10 to 1150ngCg(-1)h(-1) for SQT compounds. Both MT and SQT emissions have exponential dependencies on temperature (i.e. rates are proportional to e(betaT)). The inter-quartile range of beta-values for MT was between 0.12 and 0.17K(-1), which is higher than the value commonly used in models (0.09K(-1)). However many of the MT emissions also exhibited light dependencies, making it difficult to separate light and temperature influences. The primary light-dependent MT was ocimene, whose emissions were up to a factor of 10 higher than light-independent MT emissions. The inner-quartile range of beta-values for SQT was between 0.15 and 0.21K(-1).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2008.02.054DOI Listing

Publication Analysis

Top Keywords

emission rates
12
organic compound
8
bvoc emissions
8
tree species
8
emission
5
approaches quantifying
4
quantifying reactive
4
reactive low-volatility
4
low-volatility biogenic
4
biogenic organic
4

Similar Publications

Objective: Transcranial ultrasound (US) stimulation (TUS) has emerged as a promising technique for minimally invasive, localized, deep brain stimulation. However, indirect auditory effects during neuromodulation require careful consideration, particularly in experiments with rodents. One method to prevent auditory responses involves applying tapered envelopes to US bursts.

View Article and Find Full Text PDF

Electrochemical CO reduction reaction (CORR) has emerged as a key negative-emission technology, yet its industrial adoption hinges on cathode catalysts that deliver high selectivity and production rates at low cost. Herein, we reported a facile hydrothermal route to synthesize different scales of ZnOHF ultrathin nanowires with hybridized ZnO/ZnOHF heterointerfaces, where the 40 nm variant (NW-ZnOHF) showed a high FE of 93 % and a of -17.2 mA/cm at -1.

View Article and Find Full Text PDF

In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.

View Article and Find Full Text PDF

Objectives: To assess changes in greenhouse gas emission rates associated with the use of anaesthetic gases (desflurane, sevoflurane, and isoflurane) in Australian health care during 2002-2022, overall and by state or territory and hospital type.

Study Design: Retrospective descriptive analysis of IQVIA anaesthetic gases purchasing data.

Setting: All Australian public and private hospitals, 1 January 2002 - 31 December 2022.

View Article and Find Full Text PDF

Designing two-photon molecular emitters in nanoparticle-on-mirror cavities.

Nanoscale Horiz

September 2025

Theoretical Chemical Physics Group, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, Mons B-7000, Belgium.

Two-photon spontaneous emission (TPSE) is a second-order quantum process with promising applications in quantum optics that remains largely unexplored in molecular systems, which are usually very inefficient emitters. In this work, we model the first molecular two-photon emitters and establish the design rules, highlighting their differences from those governing two-photon absorbers. Using both time-dependent density functional theory and Pariser-Parr-Pople calculations, we calculate TPSE in three π-conjugated molecules and identify a dominant pathway.

View Article and Find Full Text PDF