Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigated the mechanisms of salt resistance of four maize (Zea mays L.) hybrids [cultivar (cv.) Pioneer 3906 and newly developed hybrids SR03, SR12 and SR13] during the first phase of salt stress. Plants were grown in aerated nutrient solutions at 1 mM Na+ (control) and 100 mM Na+ (salt stress). Stress was imposed in 25 mM steps and plants were harvested after 2 days at 100 mM Na+. At 100 mM Na+ the area of the fourth leaf, which developed under salt stress, did not change significantly in SR03 and SR12 whereas significant reductions were observed in cv. Pioneer 3906 and SR13. Concentrations of assimilates (i.e. glucose, fructose and sucrose) in the shoot sap were significantly greater under salt stress in SR03 and SR12. However, the greater assimilate supply was not responsible for their salt resistance as there were no significant reductions in assimilate concentrations even in the other two genotypes. Shoot turgor and growth were maintained in SR03 and SR12 at 100 mM Na+ through significant increases in osmolality of the shoot sap. Concentrations of free ABA and ABA-glucose esters (ABA-GE) in the growing region of the fourth leaf increased significantly under salt stress in all genotypes. Leaf area at 100 mM Na(+), expressed as a percentage of that at 1 mM, showed significant positive relationships with free ABA (R(2) = 0.62) and the sum of free ABA and ABA-GE (R(2) = 0.65). Results of this study indicate clearly that a combination of partial osmotic adjustment, a possible reduction of the sensitivity of leaf growth under salt stress to increased ABA concentrations and a growth-promoting function regulated by ABA is responsible for salt resistance in the first phase of salt stress. Genotypic variation in these mechanisms can be utilized to breed salt-resistant genotypes in maize.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3054.2007.00962.xDOI Listing

Publication Analysis

Top Keywords

salt stress
32
100 na+
20
salt resistance
16
sr03 sr12
16
salt
12
phase salt
12
free aba
12
stress
9
osmotic adjustment
8
newly developed
8

Similar Publications

Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).

View Article and Find Full Text PDF

Neomangiferin (NG) is an active ingredient extracted from mango, recognized for its antioxidant potential. However, its anti-aging efficacy remains largely unexplored. This study employed () to evaluate the anti-aging activity of NG and investigate the corresponding molecular mechanism.

View Article and Find Full Text PDF

We identified, isolated, and functionally characterized a cyclin-dependent kinase (CDK), PiPho85, from Piriformospora indica. The identified PiPho85 contains TY, PSTAIRE, protein kinase domain, and an ATP binding site which is highly conserved among the Pho85/CDK5 family protein specific for Saccharomyces cerevisiae. In a S.

View Article and Find Full Text PDF

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Unlabelled: Lactobacilli, recognized as beneficial bacteria within the human body, are celebrated for their multifaceted probiotic functions, including the regulation of intestinal flora, enhancement of body immunity, and promotion of nutrient absorption. This study comprehensively analyzed the genotypic and phenotypic characteristics of () strains isolated from the intestines of healthy chicks and assessed their potential as probiotics. The assembled genome consists of 29,521,986 bp, and a total of 1,771 coding sequences (CDSs) were predicted.

View Article and Find Full Text PDF