98%
921
2 minutes
20
Objective: To establish and optimize a real time RT-PCR system for determining the transcript levels of CatSper1 in human and mouse mature spermatozoa containing microamount of RNA.
Methods: Total RNA of human and mouse mature spermatozoa was isolated by using TRIzol reagent and reversely transcribed to complementary DNA respectively. Primers for real time RT-PCR were designed in the homologous area of the human and mouse CatSper1 mRNAs. Human sperm complementary DNA was used as the template to the optimize the conditions for SYBR Green I real time RT-PCR, including annealing temperature, Mg2+ concentration, fluorescence measurement temperature and the ratio between forward and reverse primers. The standard curve was constructed with serial dilutions of complementary DNA from human sperm to ascertain the amplification efficiency of SYBR Green I real time PCR and to quantitate the CatSper1 mRNA levels in the human and mouse mature spermatozoa.
Results: The optimal conditions for real time RT-PCR, that is, annealing temperature, Mg2+ concentration and the ratio between forward and reverse primers were 63 degrees C, 3.0 mmol/L and 1:1 respectively. The fluorescence measurement temperature was 88 degrees C. The standard curves were Y = -3.402 log (X) + 25.99 and Y = -3.409 log(X) + 24.09 in the human sperm cDNA and mouse sperm cDNA as the template, with amplification efficiency of 96.8% and 96.5% respectively. The R2 value (an indicator of the quality of the fit of the standard curve to the standard data points plotted) of both standard curves was 0.998. The CatSper1 mRNA levels in the human and mouse mature spermatozoa could be determined according to the standard curve.
Conclusion: The general RT-PCR system, by adding SYBR Green I and optimizing its conditions, could be used to quantitate the mRNA levels in both human and mouse mature spermatozoa.
Download full-text PDF |
Source |
---|
Mol Ther Methods Clin Dev
June 2025
Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Shanghai Vitalgen BioPharma Co., Ltd., Shanghai 201210, China.
Bietti crystalline dystrophy (BCD) is an autosomal recessive disorder caused by loss-of-function mutations in the gene, characterized by crystal-like lipid deposits in the retina, progressive photoreceptor loss, and retinal pigment epithelium (RPE) deterioration. Currently, there are no approved treatments for BCD. VGR-R01, an investigational gene therapy, uses subretinal administration of recombinant adeno-associated virus type 8 (AAV8) vector to deliver the human CYP4V2 gene.
View Article and Find Full Text PDFRegen Biomater
August 2025
Institute of Stomatology & Oral Maxilla Facial Key Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.
View Article and Find Full Text PDFFront Immunol
September 2025
Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.
View Article and Find Full Text PDFRSC Med Chem
August 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States of America.
A strategy for targeting tumor-associated hypoxia utilizes reductase enzyme-mediated cleavage to convert biologically inert prodrugs to their corresponding biologically active parent therapeutic agents selectively in areas of pronounced hypoxia. Small-molecule inhibitors of tubulin polymerization represent unique therapeutic agents for this approach, with the most promising functioning as both antiproliferative agents (cytotoxins) and as vascular disrupting agents (VDAs). VDAs selectively and effectively disrupt tumor-associated microvessels, which are typically fragile and chaotic in nature.
View Article and Find Full Text PDF