Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The evolution of chemical composition and structure during the thermal imidization of an ester-type polyimide precursor, poly(4,4'-oxydiphenylene p-pyromellitamic diethyl ester), in micrometer scale films were studied for a heating rate of 2.0 degrees C/min with time-resolved synchrotron X-ray diffraction, in-situ infrared spectroscopy, and modulated differential scanning calorimetry. Our analyses show that the precursor polymer undergoes imidization in a two-step process. In the first step, the precursor polymer is decomplexed from the residual solvent molecules, and in the second step, it undergoes imide ring formation with the release of ethanol as a byproduct. The imidization reaction starts around 210 degrees C and continues up to 320 degrees C. The thermal imidization reaction induces the structural evolution of the film. As the imidization reaction proceeds, the coherent length along the polymer chain axis increases. This imidization-induced structural evolution was found to occur via three steps: (i) initiation, (ii) the first crystallization, and (iii) the second crystallization. The initiation step is necessary prior to the evolution of the crystalline structure to increase the chain mobility of the precursor polymer chains, and it requires thermal heating up to at least 238 degrees C at which point 22.5% of the imidization is complete. Thereafter, the first crystallization occurs up to 310 degrees C, at which point 98.3% of the imidization is complete. In the range 310-380 degrees C, the second crystallization occurs and produces almost complete imidization of the polymer chains.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp075067oDOI Listing

Publication Analysis

Top Keywords

thermal imidization
12
structural evolution
12
precursor polymer
12
imidization reaction
12
poly44'-oxydiphenylene p-pyromellitamic
8
p-pyromellitamic diethyl
8
diethyl ester
8
imidization
8
second crystallization
8
polymer chains
8

Similar Publications

Herein, a novel class of azo photoswitches based on a phthalimide with an azo bond to the imide ring is presented, exhibiting reversible isomerization under a broad range of visible light irradiation from 405 to 530 nm. Structural variations with heteroaryl or aryl segments attached to the 3-phthalylazo unit exhibit distinct spectral features, such as red-shifted absorption, well-separated absorption bands, and tunable stability of the metastable isomer, ranging from seconds to days. They differ drastically in the half-life of -isomer stability, ranging from several seconds (-methylpyrrole) to days (-methylimidazole).

View Article and Find Full Text PDF

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF

LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.

View Article and Find Full Text PDF

Spiro-OMeTAD has remained the benchmark hole-transporting material (HTM) in state-of-the-art perovskite solar cells, owing to its favorable energy level alignment and excellent interfacial compatibility. However, its practical implementation is critically hindered by the intrinsic instabilities introduced by conventional dopants such as lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 4-tert-butylpyridine (tBP). While these dopants enhance electrical conductivity, they concurrently initiate multiple degradation pathways-including ionic migration, radical deactivation, and moisture/thermal-induced morphological failure-thereby compromising device longevity and reproducibility.

View Article and Find Full Text PDF

1,3,2-Dioxathiolane 2,2-dioxide additive in carbonate-based gel polymer electrolyte enables dual-Interface stabilization for high-performance long-cycling sodium metal batteries.

J Colloid Interface Sci

August 2025

Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China. Electronic address:

Sodium metal batteries (SMBs) are promising next-generation energy storage systems due to their exceptional theoretical capacity (1165 mAh g) and the widespread availability of sodium. However, heterogeneous sodium deposition triggers irregular solid electrolyte interphase (SEI) formation, intensifies parasitic interfacial reactions, and accelerates persistent SEI deterioration. This study introduces a molecular engineering approach for constructing a novel carbonate-derived gel polymer electrolyte (GPE) system, denoted as THEP (composed of trimethylolpropane trimethacrylate (TMPTMA), 1,6-hexanediol diacrylate (HDDA), ethyl methyl carbonate (EMC), and propylene carbonate (PC)), via in-situ thermal polymerization.

View Article and Find Full Text PDF