Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system.

Nature

Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.

Published: November 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Detailed analysis of neuronal network architecture requires the development of new methods. Here we present strategies to visualize synaptic circuits by genetically labelling neurons with multiple, distinct colours. In Brainbow transgenes, Cre/lox recombination is used to create a stochastic choice of expression between three or more fluorescent proteins (XFPs). Integration of tandem Brainbow copies in transgenic mice yielded combinatorial XFP expression, and thus many colours, thereby providing a way to distinguish adjacent neurons and visualize other cellular interactions. As a demonstration, we reconstructed hundreds of neighbouring axons and multiple synaptic contacts in one small volume of a cerebellar lobe exhibiting approximately 90 colours. The expression in some lines also allowed us to map glial territories and follow glial cells and neurons over time in vivo. The ability of the Brainbow system to label uniquely many individual cells within a population may facilitate the analysis of neuronal circuitry on a large scale.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature06293DOI Listing

Publication Analysis

Top Keywords

fluorescent proteins
8
analysis neuronal
8
transgenic strategies
4
strategies combinatorial
4
expression
4
combinatorial expression
4
expression fluorescent
4
proteins nervous
4
nervous system
4
system detailed
4

Similar Publications

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

was identified in human and mouse Huntington's disease brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 of that contributes to aggregate formation and neuronal dysfunction. Detection of the huntingtin exon 1 protein (HTT1a) has been accomplished with Meso Scale Discovery, Homogeneous Time Resolved Fluorescence and immunoprecipitation assays in Huntington's disease knock-in mice, but direct detection in homogenates by gel electrophoresis and western blot assay has been lacking. Subcellular fractions prepared from mouse and human Huntington's disease brain were separated by gel electrophoresis and probed by western blot with neoepitope monoclonal antibodies 1B12 and 11G2 directed to the C-terminal eight residues of HTT1a.

View Article and Find Full Text PDF

Using an in situ nucleosome stability assay based on salt extraction, we identified distinct stability features of H2A.Z-containing nucleosomes linked to alternative interactions of the histone variant's C-terminal tail (Imre et al., Nat.

View Article and Find Full Text PDF

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

Development of suitable carbohydrate-decorated, biocompatible, and stimuli-responsive fluorescent microgels that can selectively bind and detect proteins (such as lectins) is an important research topic. Herein, we report the development of mannose-decorated, dual-stimuli (temperature and pH)-responsive fluorescent poly(aminoamide) microgels, which can selectively bind to and thereby detect the presence of concanavalin A (Con A). The resultant stimuli-responsive microgels have a lower critical solution temperature (VPTT) of 37.

View Article and Find Full Text PDF