High diversity due to balancing selection in the promoter region of the Medea gene in Arabidopsis lyrata.

Curr Biol

Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories King's Buildings, West Mains Road, Edinburgh EH9 3JT, United Kingdom.

Published: November 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular imprinting is the differential expression and/or silencing of alleles according to their parent of origin [1, 2]. Conflicts between parents, or parents and offspring, should cause "arms races," with accelerated evolution of the genes involved in imprinting. This should be detectable in the evolution of imprinting genes' protein sequences and in the promoter regions of imprinted genes. Previous studies, however, found no evidence of more amino acid substitutions in imprinting genes [1, 3]. We have analyzed sequence diversity of the Arabidopsis lyrata Medea (MEA) gene and divergence from the A. thaliana sequence, including the first study of the promoter region. In A. thaliana, MEA is imprinted, with paternal alleles silenced in endosperm cells [4, 5], and also functions in the imprinting machinery [4, 6]; MEA protein binding at the MEA promoter region indicates self-regulated imprinting [7-9]. We find the same paternal MEA allele silencing in A. lyrata endosperm but no evidence for adaptive evolution in the coding region, whereas the 5' flanking region displays high diversity, with distinct haplotypes, suggesting balancing selection in the promoter region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2007.09.051DOI Listing

Publication Analysis

Top Keywords

promoter region
16
high diversity
8
balancing selection
8
selection promoter
8
arabidopsis lyrata
8
region
6
imprinting
6
promoter
5
mea
5
diversity balancing
4

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.

View Article and Find Full Text PDF

To understand shared and ancestry-specific genetic control of brain protein expression and its ramifications for disease, we mapped protein quantitative trait loci (pQTLs) in 1,362 brain proteomes from African American, Hispanic/Latin American and non-Hispanic white donors. Among the pQTLs that multiancestry fine-mapping MESuSiE confidently assigned as putative causal pQTLs in a specific population, most were shared across the three studied populations and are referred to as multiancestry causal pQTLs. These multiancestry causal pQTLs were enriched for exonic and promoter regions.

View Article and Find Full Text PDF

HIC2 Suppresses Glioblastoma Progression via Transcriptional Repression of SEMA3A and Inhibition of TGF-β Signaling.

Free Radic Biol Med

September 2025

Department of Neurosurgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China. Electronic address:

Glioblastoma (GBM), the most aggressive primary brain tumor, is associated with dismal clinical outcomes and a critical lack of actionable therapeutic targets. Herein, we report that Hypermethylated in Cancer 2 (HIC2) is significantly downregulated in GBM tissues. In vitro, ectopic overexpression of HIC2 markedly suppresses GBM cell proliferation, invasion, and migration, while in vivo, it substantially inhibits tumor growth and prolongs survival in an orthotopic xenograft model (p < 0.

View Article and Find Full Text PDF

Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.

View Article and Find Full Text PDF