Designing nanosensors based on charged derivatives of gramicidin A.

J Am Chem Soc

Department of Chemical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109-2099, USA.

Published: August 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Detection of chemical processes on a single molecule scale is the ultimate goal of sensitive analytical assays. We recently reported the possibility to detect chemical modifications on individual molecules by monitoring a change in the single ion channel conductance of derivatives of gramicidin A (gA) upon reaction with analytes in solution. These peptide-based nanosensors detect reaction-induced changes in the charge of gA derivatives that were engineered to carry specific functional groups near their C-terminus.1 Here, we discuss five key design parameters to optimize the performance of such chemomodulated ion channel sensors. In order to realize an effective sensor that measures changes in charge of groups attached to the C-terminus of a gA pore, the following conditions should be fulfilled: (1) the change in charge should occur as close to the entrance of the pore as possible; (2) the charge before and after reaction should be well-defined within the operational pH range; (3) the ionic strength of the recording buffer should be as low as possible while maintaining a detectable flow of ions through the pore; (4) the applied transmembrane voltage should be as high as possible while maintaining a stable membrane; (5) the lipids in the supporting membrane should either be zwitterionic or charged differently than the derivative of gA. We show that under the condition of high applied transmembrane potential (>100 mV) and low ionic strength of the recording buffer (< or =0.10 M), a change in charge at the entrance of the pore is the dominant requirement to distinguish between two differently charged derivatives of gA; the conductance of the heterodimeric gA pore reported here does not depend on a difference in charge at the exit of the pore. We provide a simple explanation for this asymmetric characteristic based on charge-induced local changes in the concentration of cations near the lipid bilayer membrane. Charge-based ion channel sensors offer tremendous potential for ultrasensitive functional detection since a single chemical modification of each individual sensing element can lead to readily detectable changes in channel conductance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja0711819DOI Listing

Publication Analysis

Top Keywords

ion channel
12
charged derivatives
8
derivatives gramicidin
8
channel conductance
8
changes charge
8
channel sensors
8
change charge
8
entrance pore
8
ionic strength
8
strength recording
8

Similar Publications

Relationships of Circulating Plasma Metabolites With the QT Interval in a Large Population Cohort.

Circ Genom Precis Med

September 2025

Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, London, United Kingdom (W.J.Y., M.M.S., J.R., S.v.D., H.R.W., A.T., P.B.M.).

Background: There is a higher prevalence of heart rate corrected QT (QTc) prolongation in patients with diabetes and metabolic syndrome. QT interval genome-wide association studies have identified candidate genes for cardiac energy metabolism, and experimental studies suggest that polyunsaturated fatty acids have direct effects on ion channel function. Despite this, there has been limited study of metabolite concentration relationships with QT intervals.

View Article and Find Full Text PDF

Li-Well ZnO Memtransistors: High Reliability for Neuromorphic Applications.

Adv Mater

September 2025

Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.

Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.

View Article and Find Full Text PDF

Piezo-type mechanosensitive ion channel component 1 (Piezo1) is an evolutionarily conserved and multifunctional mechanosensitive ion channel protein that has emerged as a significant contributor to the pathogenesis of inflammatory bowel disease (IBD). Piezo1 plays a crucial role in regulating intestinal barrier integrity, immune responses, and the intestinal nervous system, thereby influencing disease progression. Its expression patterns correlate with disease severity and inflammatory markers in IBD patients, indicating its potential as a diagnostic and prognostic biomarker.

View Article and Find Full Text PDF

Strong intermolecular interactions facilitate the formation of efficient ion transport channels, which, in turn, significantly boost the performance of anion exchange membranes (AEMs). Herein, 9-anthracene methanol with both π-π stacking and hydrogen bonding intermolecular forces is used as a bifunctional unit to synthesize high-performance AEMs through the Friedel-Crafts superacid catalytic reaction for the first time. The π-π stacking in the bifunctional units can induce hydrophilic pyridine cations to aggregate, and the hydrogen bonding can provide transport sites for OH and water molecules in the hydrophobic component.

View Article and Find Full Text PDF

Crystallization-Engineered Single-Crystal T-NbO Whiskers with Nearly 100% Exposed Vertical (001) Facets for Li-Ion Storage.

ACS Appl Mater Interfaces

September 2025

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.

Tailoring the crystalline structure and facet orientation of T-NbO anode electrodes is pivotal for optimizing the Li transport kinetics. Herein, a crystallization engineering strategy is employed to synthesize urchin-like T-NbO microspheres composed of single-crystalline whiskers growing along the (001) orientation. These whiskers are characterized by nearly 100% exposed vertical (001) facets that accelerate Li diffusion.

View Article and Find Full Text PDF