Alteration of nuclear matrix-intermediate filament system and differential expression of nuclear matrix proteins during human hepatocarcinoma cell differentiation.

World J Gastroenterol

The Key Laboratory of Chinese Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.

Published: May 2007


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: To investigate the association between the configurational and compositional changes of nuclear matrix and the differentiation of carcinoma cells.

Methods: Cells cultured with or without 5 x 10(-3) mmol/L of hexamethylene bisacetamide (HMBA) on Nickel grids were treated by selective extraction and prepared for whole mount observation under electron microscopy. The samples were examined under transmission electron microscope. Nuclear matrix proteins were selectively extracted and subjected to subcellular proteomics study. The protein expression patterns were analyzed by PDQuest software. Spots of differentially expressed nuclear matrix proteins were excised and subjected to in situ digestion with trypsin. The peptides were analyzed by matrix-assisted laser-desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Data were submitted for database searching using Mascot tool (www.matrixscience.com).

Results: The nuclear matrix (NM) and intermediate filament (IF) in SMMC-7721 hepatocarcinoma cells were found relatively sparse and arranged irregularly. The nuclear lamina was non-uniform, and two kinds of filaments were not tightly connected. After induction for differentiation by HMBA, the NM-IF filaments were concentrated and distributed uniformly. The heterogeneous population of filaments, including highly branched ultrathin filaments could also be seen in the regular meshwork. The connection between the two kinds of filaments and the relatively thin, condensed and sharply demarcated lamina composed of intermediate-sized filaments was relatively fastened. Meanwhile, 21 NM proteins changed remarkably during SMMC-7721 cell differentiation. Four proteins, i.e. mutant Pyst1, hypothetical protein, nucleophosmin 1, and LBP were downregulated, whereas four other proteins, eIF6, p44 subunit, beta-tubulin, and SIN3B were upregulated with the last one, SR2/ASF found only in the differentiated SMMC-7721 cells.

Conclusion: The induced differentiation of SMMC-7721 cells by HMBA is accompanied by the configurational changes of nuclear matrix-intermediate filament (NM-IF) system and the compositional changes of nuclear matrix protein expression. These changes may be important morphological or functional indications of the cancer cell reversion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395629PMC
http://dx.doi.org/10.3748/wjg.v13.i20.2791DOI Listing

Publication Analysis

Top Keywords

nuclear matrix
24
matrix proteins
12
changes nuclear
12
nuclear matrix-intermediate
8
matrix-intermediate filament
8
nuclear
8
cell differentiation
8
compositional changes
8
protein expression
8
kinds filaments
8

Similar Publications

Objective: This study aimed to describe the MRI features of lower limbs (thighs and calves) in patients with anti-NXP2 antibody positive myositis, and explore their relationship with clinical manifestations and prognosis.

Methods: Adult patients with anti-NXP2 antibody who underwent both thigh and calf MRI examinations simultaneously were enrolled between 2017 and 2023. The MRI features and medical records of patients were reviewed.

View Article and Find Full Text PDF

Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.

View Article and Find Full Text PDF

We report the observation of negative differential resistance (NDR) in single-atom single-electron devices based on arsenic, phosphorus and potassium dopants implanted in a silicon host matrix. All devices exhibit NDR, with the potassium-based one exhibiting NDR at room temperature because of the larger charging and confinement energies. Our experimental results are reproduced with a simple model that assumes sequential electron tunnelling through two series-connected charge centres, each having two discrete energy levels.

View Article and Find Full Text PDF

Enhanced Cs triple-quantum excitation in solid-state NMR of Cs-bearing zeolites.

Solid State Nucl Magn Reson

August 2025

School of Chemistry, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel. Electronic address:

Geopolymers are aluminosilicate materials that exhibit effective immobilization properties for low-level radioactive nuclear waste, and more specifically for the immobilization of radioactive cesium. The identification of the cesium-binding sites and their distribution between the different phases making up the geopolymeric matrix can be obtained using solid-state NMR measurements of the quadrupolar spin Cs, which is a surrogate for the radioactive cesium species present in nuclear waste streams. For quadrupolar nuclei, acquiring two-dimensional multiple-quantum experiments allows the acquisition of more dispersed spectra when multiple sites overlap.

View Article and Find Full Text PDF

Aortic valve stenosis is a progressive and increasingly prevalent disease in older adults, with no approved pharmacologic therapies to prevent or slow its progression. Although genetic risk factors have been identified, the contribution of epigenetic regulation remains poorly understood. Here, we demonstrated that histone deacetylase 3 (HDAC3) maintains aortic valve structure by suppressing mitochondrial biogenesis and preserving extracellular matrix integrity in valvular interstitial fibroblasts.

View Article and Find Full Text PDF