98%
921
2 minutes
20
Homologous recombination (HR) was found to be so frequent in haloarchaea that its significance in evolution and diversity of this clade of life might have been underestimated. However, so far there has been no report on recombination function carried on plasmid. Here we report that a 4.8-kb SnaBI-PvuII digested segment from pHH205 might carry such a function. Four constructed plasmids: pUN, pUN-205, pUM and pUM-205, with pUN and pUN205 containing Nov(R) gene, pUM and pUM-205 carrying Mev(R) gene, were used to transform Haloferax volcanii DS52 (radA(-)). The results showed that only pUN-205 and pUM-205 containing the 4.8-kb SnaBI-PvuII digested segment from pHH205 were able to shift Nov(R) and Mev(R) gene into the chromosome of Haloferax volcanii DS52 through HR, whereas those in pUN and pUM could not, which indicated that the segment from pHH205 does contain a recombination function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-007-0043-z | DOI Listing |
J Vis Exp
September 2025
Department of Biochemistry & Molecular Biology, Dalhousie University; Department of Chemistry, Dalhousie University; School of Biomedical Engineering, Dalhousie University;
This corrects the article 10.3791/68714.
View Article and Find Full Text PDFBlood
September 2025
University of Illinois at Chicago, Chicago, Illinois, United States.
Hematopoietic stem cells (HSCs) responsible for blood cell production and their bone marrow regulatory niches undergo age-related changes, impacting immune responses and predisposing individuals to hematologic malignancies. Here, we show that the age-related alterations of the megakaryocytic niche and associated downregulation of Platelet Factor 4 (PF4) are pivotal mechanisms driving HSC aging. PF4-deficient mice display several phenotypes reminiscent of accelerated HSC aging, including lymphopenia, increased myeloid output, and DNA damage, mimicking physiologically aged HSCs.
View Article and Find Full Text PDFPLoS Genet
September 2025
Biology of Centrosomes and Genetic Instability Lab, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France.
Unscheduled whole genome duplication (WGD), also described as unscheduled or non-physiological polyploidy, can lead to genetic instability and is commonly observed in human cancers. WGD generates DNA damage due to scaling defects between replication factors and DNA content. As a result DNA damage repair mechanisms are thought to be critical for ensuring cell viability and proliferation under these conditions.
View Article and Find Full Text PDFPLoS Pathog
September 2025
State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
Influenza B viruses (IBVs), though often overshadowed by influenza A viruses (IAVs), remain a significant global public health concern, particularly during seasons when they predominate. However, the molecular mechanisms underlying IBV pathogenicity remain largely unknown. In this study, we identified two amino acid substitutions, PB2-N460S and NP-I163T, from IBV clinical isolates with distinct replication and pathogenicity profiles.
View Article and Find Full Text PDFPLoS One
September 2025
Orthopaedics, Hebei Medical University Third Hospital, Shijiazhuang, China.
Enoxaparin sodium (ES), a low molecular weight heparin derivative, has recently been recognized for its diverse biological activities. In particular, the ability of heparin to modulate inflammation has been utilized to enhance the biocompatibility of bone implant materials. In this study, we utilized poly (methyl methacrylate) (PMMA), a drug loading bone implant material, as a matrix and combined this with enoxaparin sodium (ES) to create enoxaparin sodium PMMA cement (ES-PMMA) to investigate the regulatory effects of ES on inflammatory responses in bone tissue from an animal model.
View Article and Find Full Text PDF