Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Three organic-inorganic hybrid compounds [Mn(bpy)V(bpy)V(3)O(11)] (bpy = 2,2'-bipyridine) (1), [Cu(bpy)V(2)O(6)] (2) and [Zn(phen)3][V(2)O(6)].10H(2)O (phen = 1,10-phenanthroline) (3) have been synthesized hydrothermally. Single crystal X-ray diffraction analyses revealed that compound 1 is the first example of bpy units coordinating to different transition metals in one molecule. Compound 2 is a new isomer of [Cu(bpy)V(2)O(6)] which was named the gamma-isomer by us. In compound 3, a 2-D water sheet with big holes filled by the "naked" [V(4)O(12)](4-) clusters is found.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b618461hDOI Listing

Publication Analysis

Top Keywords

organic-inorganic hybrid
8
hydrothermal syntheses
4
syntheses structural
4
structural characterizations
4
characterizations organic-inorganic
4
hybrid materials
4
materials mii-ligand/vanadium
4
mii-ligand/vanadium oxide
4
oxide system
4
system mii
4

Similar Publications

Significantly enhanced breakdown strength and energy density performances of methyl methacrylate--glycidyl methacrylate nanocomposites filled with BNNs@PDA-Ag hybrid structures.

Nanoscale

September 2025

School of Chemical Engineering, Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.

Electronic capacitor films based on polymer matrices and inorganic nanofillers capable of storing more energy play a crucial role in advanced modern electrical industries and devices. Herein, a series of nanocomposite films composed of "core-shell-dot" BNNs-PDA@Ag hybrid structures with multiple breakdown strength enhancement mechanisms as fillers and methyl methacrylate--glycidyl methacrylate (MG) copolymers as matrices were successfully synthesized. The introduced 2D and wide-bandgap BNNs not only enhanced the breakdown strength by taking advantage of their excellent physical properties, but also further improved their energy storage properties both at ambient and elevated temperatures through the formation of deeper traps at the organic-inorganic interface.

View Article and Find Full Text PDF

Helically ordered chiral super spaces enable optical chirality in hybrid organic-inorganic perovskite crystals.

J Colloid Interface Sci

September 2025

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.

View Article and Find Full Text PDF

Efficient energy transfer in a hybrid organic-inorganic van der Waals heterostructure.

Sci Adv

September 2025

National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

Two-dimensional (2D) materials offer strong light-matter interaction and design flexibility beyond bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this limit. However, it is found challenging due to the competing charge transfer (CT) process and lack of resonance in exciton states.

View Article and Find Full Text PDF

Organic-inorganic hybrid thiocyanates include a variety of compositions and structure types. To develop a better understanding of the interactions that control the crystal structure in this family of materials, six hybrid thiocyanate halide compounds with the general formula ACd(SCN)X (A = CHNH, CHCHNH, CH(CH)NH, CH(CH)NH; X = Cl, Br) have been synthesized. Single crystal X-ray diffraction shows that five of the six compounds crystallize with triclinic 1̅ symmetry, the lone exception being (CH(CH)NH)Cd(SCN)Cl which adopts 2/ symmetry.

View Article and Find Full Text PDF

Redox-active organic-inorganic hybrid electrode materials are promising candidates for eco-friendly, high-energy-density supercapacitors. The synergy between organic and inorganic components in energy storage devices has attracted considerable interest due to their complementary attributes, including flexibility, long-term stability, and high conductivity. This study presents an innovative approach for synthesizing an organic-inorganic active electrode material by grafting diazonium salts of 8-aminoquinoline (8-AQ-N ) onto CuFeO nanoparticle (NP) surfaces.

View Article and Find Full Text PDF