98%
921
2 minutes
20
Our previous proteomic investigation of lung neoplasia in vitro demonstrated a high concentration of the lung cancer biomarker and splicing factor, hnRNP A2/B1, in the transformed mouse lung epithelial cell line, E9. Since changes in pre-mRNA splicing profoundly affect neoplastic progression, we examined hnRNP A2/B1 expression in chemically induced primary mouse lung tumors, an in vivo model of pulmonary adencocarcinoma. Tumor hnRNP A2/B1 content and spatial distribution assessed by immunohistochemistry varied with stage of progression, genetic background, and whether tumors were induced by a single agent (urethane) or by 2-stage initiation/promotion (3-methylcholanthrene/butylated hydroxytoluene) carcinogenesis. To address mechanisms governing hnRNP A2/B1 expression changes, we utilized in vitro models. hnRNP A2/B1 protein was overexpressed in E9, the spontaneous tranformant of immortalized but non-neoplastic E10 cells, but expression was not strictly a function of enhanced proliferative rate in neoplastic cells. Elevated mRNA content was positively associated with cell division in both E10 and E9, but hnRNP A2/B1 protein levels decreased in proliferating E10 cells. The increased mRNA reflected enhanced mRNA stability, as shown by measuring time-dependent mRNA decay after inhibiting transcription. Dysregulation of hnRNP A2/B1 expression during lung neoplasia in vivo thus depends on complex gene-environmental interactions that affect cell type-specific changes in mRNA processing and, most probably, the rates of translation and/or protein degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mc.20321 | DOI Listing |
Sci Adv
August 2025
Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
The pseudouridine synthase DKC1 regulates internal ribosome entry site (IRES)-dependent translation and is up-regulated in cancers by the MYC family of oncogenes. The functional significance of DKC1 up-regulation and the mechanistic connection between pseudouridylation and IRES-mediated translation remain poorly understood. Here, we report that DKC1 drives an ATF4-mediated transcriptional program that supports amino acid metabolism and stress adaptation.
View Article and Find Full Text PDFJ Cell Biol
October 2025
Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan.
TDP-43, an RNA-binding protein (RBP) encoded by the TARDBP gene, is crucial for understanding the pathogenesis of neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. Dysregulated TDP-43 causes motor neuron loss, highlighting the need for proper expression levels. Here, we identify a dominant-negative isoform among the multiple TARDBP splicing variants and validate its endogenous expression using a developed antibody against its translated product.
View Article and Find Full Text PDFCNS Neurosci Ther
August 2025
The Third Central Clinical College of Tianjin Medical University, Tianjin, China.
Aims: Sevoflurane can aggravate the progression of neurodegeneration, although the underlying mechanisms remain incompletely understood. Our previous study identified a link between heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1) and sevoflurane-induced neurocognitive impairments. The abnormal hydrogel phase transition of stress granules (SGs) assembled via liquid-liquid phase separation (LLPS) by hnRNPA2/B1 is a crucial element in neurodegeneration.
View Article and Find Full Text PDFAlzheimers Dement
August 2025
Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, Arizona, USA.
Introduction: Splicing protein mislocalization is associated with tau pathogenesis, but its role in Down syndrome (DS) is under-investigated.
Methods: Spliceosome associations with tau and plaque pathology were examined in frontal cortex from DS with dementia (DSD+) and without dementia (DSD-) using quantitative immunoblotting and immunohistochemistry.
Results: U1-70K and U1A levels were downregulated, and hnRNPA2B1, 3Rtau, and 4Rtau were upregulated, whereas SRSF2 and CLK1 were unchanged in DSD+.
Cell Mol Life Sci
August 2025
Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
Oligodendrocyte dysfunction, myelin degeneration, and white matter changes are critical events in the cognitive decline of Alzheimer's disease (AD). Amyloid-β peptide (Aβ), a hallmark of AD, disrupts oligodendrocyte and myelin homeostasis, through mechanisms that remain poorly understood. Here, transcriptomic profiling of Aβ-exposed oligodendrocytes revealed widespread gene expression changes, particularly in RNA-related processes.
View Article and Find Full Text PDF