98%
921
2 minutes
20
Percentage of grains with chalkiness (PGWC), one of the important traits assessing rice grain appearance quality, belonged to qualitative trait controlled by many genes. Our previous study identified a novel quantitative trait locus (QTL), namely qPGWC-9, related to high PGWC using chromosomal segment substitution line (CSSL) population. qPGWC-9 was shown to be expressed stably in eight environments. AIS82 which carried a IR24 chromosomal segment corresponding to qPGWC-9 in the Asominori genetic background was selected and analyzed to clarify the physiological function of qPGWC-9 from the relationship of source and sink of carbohydrates. It showed that AIS82 had higher PGWC than Asominori (control variety with low PGWC). The net photosynthetic rate of flag leaf of AIS82 showed no significant difference from that of Asominori, so photosynthetic ability in flag leaf was not directly related with high PGWC in AIS82. But, the changes in pattern of activity of the key enzymes associated with starch synthesis were different in these plants. Activities of some key enzymes in starch synthesis in AIS82 changed more radically than those in Asominori. These results suggest that qPGWC-9 might determine the activities of some enzymes associated with starch synthesis and therefore affect the degree of grain chalkiness.
Download full-text PDF |
Source |
---|
Front Microbiol
August 2025
Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
Background: Increasing evidence suggests a potential role of the gut microbiota in Parkinson's disease (PD). However, the relationship between the gut microbiome (GM) and PD dementia (PDD) remains debated, with their causal effects and underlying mechanisms not yet fully understood.
Methods: Utilizing data from large-scale genome-wide association studies (GWASs), this study applied bidirectional and mediating Mendelian randomization (MR) to investigate the causal relationship and underlying mechanisms between the GM and PDD.
Ann Bot
September 2025
The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong Province, China 264025.
Background And Aims: Cell wall invertases have multiple roles in plant growth and development, yet their biological functions in seed oil production are still not understood.
Methods: In the present study, the Oryza sativa (rice) cell wall invertase gene OsGIF1 (GRAIN INCOMPLETE FILLING 1) was ectopically expressed in Glycine max (Soybean) and its functions in grain yield and seed nutrition was investigated.
Key Results: We found that constitutive expression of OsGIF1 significantly improved biomass production, grain yield and seed nutrition in transgenic plants.
Plant Physiol Biochem
September 2025
Shanxi Normal University, Taiyuan, 030000, PR China.
Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Science, LLP "Research and Production Enterprise "Innovator", Astana, Kazakhstan.
This study investigates the physicochemical, microbiological, and microstructural changes in soft wheat grain during germination under varying moisture conditions: moderately dry, moist, and wet. Pre-harvest sprouting can severely compromise grain quality and usability; however, understanding germination-induced changes offers insights into potential utilization strategies. Physical parameters-including thousand-kernel weight, test weight, and falling number-showed strong correlation with germination time, decreasing by 8.
View Article and Find Full Text PDFJ Food Sci
September 2025
College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China.
The growing consumer interest in functional and health-oriented foods prompted the incorporation of tartary buckwheat sprout flour (TBSF) into food production. The addition of TBSF enhanced the nutritional value of noodles. Research has shown that as the proportion of TBSF increased, both the water absorption rate and thermal stability of the dough improved, while formation time decreased and dough aging was inhibited.
View Article and Find Full Text PDF