98%
921
2 minutes
20
The investigation of the reproducibility in functional MRI (fMRI) is an important step in the quantification and analysis of paradigm-related brain activation. This article reports on reproducibility of cortical activation characterized by repeated fMRI runs (10 times) during the performance of a motor imagery and a passive auditory stimulation as a control task. Two parameters, the size of activation and BOLD signal contrast, were measured from regions-of-interest for 10 subjects across different threshold conditions. The variability of these parameters was normalized with respect to the mean obtained from 10 runs, and represented as the intrasession variability. It was found that the variability was significantly lower in the measurement of BOLD signal contrast as compared to the measurement of the size of activation. The variability of the activation volume measurement was greater in the motor imagery task than in the auditory tasks across all thresholds. This task-dependent difference was not apparent from the measurement of the BOLD signal contrast. The presence of threshold dependence in the variability measurement was also examined, but no such dependency was found. The results suggest that a measurement of BOLD signal itself is a more reliable indicator of paradigm-related brain activation during repeated fMRI scans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207450600582546 | DOI Listing |
Nat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFMagn Reson Med
September 2025
A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
Since its introduction more than 30 years ago, the blood oxygenation level-dependent (BOLD) contrast remains the most widely used method for functional MRI (fMRI) in humans and animal models. The BOLD contrast is typically acquired with echo planar imaging (EPI) to obtain sensitization of the signal during the echo time (TE) to dynamic changes in deoxyhemoglobin content, while achieving high spatiotemporal resolution and full brain coverage. However, EPI-based fMRI also faces multiple shortcomings, including sensitivity to body motion, susceptibility-related signal dropouts, interference with multimodal sensors, and loud acoustic noise.
View Article and Find Full Text PDFMultivariate pattern analysis (MVPA) methods are a versatile tool to retrieve information from neurophysiological data obtained with functional magnetic resonance imaging (fMRI) techniques. Since fMRI is based on measuring the hemodynamic response following neural activation, the spatial specificity of the fMRI signal is inherently limited by contributions of macrovascular compartments that drain the signal from the actual location of neural activation, making it challenging to image cortical structures at the spatial scale of cortical columns and layers. By relying on information from multiple voxels, MVPA has shown promising results in retrieving information encoded in fine-grained spatial patterns.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
fMRI unit, Department of Neurology, Hadassah Medical Organization and Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, Jerusalem, Israel.
Purpose: Behavioral and electrophysiological studies have shown that vision is slower under scotopic conditions (dark, activating only rods) than photopic conditions (light, activating only cones). However, slower scotopic processing cannot be solely explained by findings that rod signals are slower than cone signals, and it is unknown whether temporal processing differences persist in cortex. Flickering stimuli have previously been used in functional MRI (fMRI) studies to probe photopic cortical temporal sensitivity.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905.
The human brain dynamically adapts to hypoxia, a reduction in oxygen essential for metabolism. The brain's adaptive response to hypoxia, however, remains unclear. We investigated dynamic functional connectivity (FC) in healthy adults under acute hypoxia (FiO = 7.
View Article and Find Full Text PDF