Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An efficient system for the fast and efficient purification of transglutaminase from recombinant Streptomyces platensis and expressed in Streptomyces lividans 25-2 is described. Because the purification procedure of this system is flexible, culture broth from laboratory (20 l) and pilot-plant (130 l) fermentations were used to purify the enzyme to electrophoretic homogeneity with high purity (90-95%) and yield (61-77%) within 1 or 2 days.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-006-9205-5DOI Listing

Publication Analysis

Top Keywords

efficient purification
8
purification transglutaminase
8
transglutaminase recombinant
8
recombinant streptomyces
8
streptomyces platensis
8
platensis scales
4
scales efficient
4
efficient system
4
system fast
4
fast efficient
4

Similar Publications

Enantioselective Synthesis of Spirooxindole Derivatives through Lewis Acid-Catalyzed Michael Addition/Cyclization Cascade.

J Org Chem

September 2025

Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. of China.

A Mg(OTf)-catalyzed asymmetric Michael addition/cyclization cascade reaction between 3-isothiocyanato oxindoles and 2-arylidene-1,3-indanediones has been developed. This transformation provides an efficient and concise approach to biologically important bispiro[indanedione-oxindole-pyrrolidinyl]s under mild conditions in good to excellent yields (70-99% yields) with moderate to good stereoselectivities (up to 99% and >95:5 d.r.

View Article and Find Full Text PDF

A polydopamine-glued g-CN/CoFeWO membrane, prepared one-pot synthesis, achieves complete sulfamethoxazole degradation through synergistic photocatalysis and PMS activation. It exhibits robust stability over 10 hours of continuous operation, maintaining high efficiency (97%) even in real municipal wastewater effluent, offering a novel and promising water purification strategy.

View Article and Find Full Text PDF

Limosilactobacillus fermentum CRL2085, isolated from feedlot cattle rations, displayed high efficiency as a probiotic when administered to animals. A comprehensive genomic analysis was performed to elucidate the genetic basis underlying its probiotic potential. Fifteen genomic islands and CRISPR-Cas elements were identified in its genome.

View Article and Find Full Text PDF

Antigen-binding proteins, such as nanobodies, modified with functional small molecules hold great potential for applications including imaging probes, drug conjugates, and localized catalysts. However, traditional chemical labeling methods that randomly target lysine or cysteine residues often produce heterogeneous conjugates with limited reproducibility. Conventional site-specific conjugation approaches, which typically modify only the N- or C-terminus, may also be insufficient to achieve the desired functionalities.

View Article and Find Full Text PDF

Background: Previous studies involving cleanup via conventional solid-phase extraction (SPE) materials to overcome matrix effects for the polar organophosphonate and -phosphinate pesticides glyphosate, glufosinate, ethephon, fosetyl, and their various metabolites often showed limitations due to the existence of various matrix compounds in plant commodities with similar polarity. To overcome existing drawbacks, we utilized the unique selectivity provided by metal oxides as SPE materials. These were exploited in a novel automated online SPE-LC-MS/MS method which allowed analyte-specific trapping in the presence of excessive amounts of matrix compounds as typically contained in extracts of the Quick Polar Pesticides (QuPPe) method.

View Article and Find Full Text PDF