Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We developed algorithms for spatial scaling of leaf area index (LAI) using sub-pixel information. The study area is located near Liping County, Guizhou Province, in China. Methods for LAI spatial scaling were investigated on LAI images with 960 m resolution derived in two ways. LAI from distributed calculation (LAID) was derived using Landsat ETM+ data (30 m), and LAI from lumped calculation (LAIL) was obtained from the coarse (960 m) resolution data derived through resampling the ETM+ data. We found that lumped calculations can be considerably biased compared to the distributed (ETM+) case, suggesting that global and regional LAI maps can be biased if surface heterogeneity within the mapping resolution is ignored. Based on these results, we developed algorithms for removing the biases in lumped LAI maps using sub-pixel land cover-type information, and applied these to correct one coarse resolution LAI product which greatly improved its accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2006.08.016 | DOI Listing |