Propagating waves mediate information transfer in the motor cortex.

Nat Neurosci

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA.

Published: December 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-frequency oscillations in the beta range (10-45 Hz) are most active in motor cortex during motor preparation and are postulated to reflect the steady postural state or global attentive state of the animal. By simultaneously recording multiple local field potential signals across the primary motor and dorsal premotor cortices of monkeys (Macaca mulatta) trained to perform an instructed-delay reaching task, we found that these oscillations propagated as waves across the surface of the motor cortex along dominant spatial axes characteristic of the local circuitry of the motor cortex. Moreover, we found that information about the visual target to be reached was encoded in terms of both latency and amplitude of evoked waves at a time when the field phase-locked with respect to the target onset. These findings suggest that high-frequency oscillations may subserve intra- and inter-cortical information transfer during movement preparation and execution.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1802DOI Listing

Publication Analysis

Top Keywords

motor cortex
16
high-frequency oscillations
8
motor
6
propagating waves
4
waves mediate
4
mediate transfer
4
transfer motor
4
cortex
4
cortex high-frequency
4
oscillations beta
4

Similar Publications

Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF

Brain activation for language and its relationship to cognitive and linguistic measures.

Cereb Cortex

August 2025

Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.

Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.

View Article and Find Full Text PDF

Purpose: Resection of glioblastomas infiltrating the motor cortex and corticospinal tract (CST) is often linked to increased perioperative morbidity. Navigated transcranial magnetic stimulation (nTMS) motor mapping has been advocated to increase patient safety in these cases. The additional impact of patient frailty on overall outcome after resection of cases with increased risk for postoperative motor deficits as identified with nTMS needs to be investigated.

View Article and Find Full Text PDF

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF