98%
921
2 minutes
20
One major measurement of tissue-engineered constructs efficacy and performance is determining expression levels of genes of interest at the molecular level. This measurement is commonly carried out with reverse transcription-polymerase chain reaction (RT-PCR). In this study, we described a novel method in achieving absolute quantification of gene expression using real-time PCR (aqPCR). This novel method did not require molecular cloning steps to prepare the standards for quantification comparison. Standards were linear double-stranded DNA molecules instead of the typical gene-in-plasmid format. aqPCR could also be used to give relative quantification comparisons between samples simply by dividing the copy numbers readings of the gene of interest with that of the normalization gene. RNA was extracted from monolayer and from polycaprolactone scaffold cultures and assayed for beta-actin and osteocalcin genes. We compared our aqPCR method with end-point PCR since end-point PCR is still a common means of measuring gene expression in the biomaterials field. This study showed that aqPCR was a better method to quantify gene expression than end-point PCR. With our described linear DNA standards method, we were able to obtain not only relative quantification of osteocalcin and beta-actin expression level but also actual copy numbers of osteocalcin and beta-actin for the monolayer culture and to be 1.34 x 10(4) and 1.45 x 10(7) copies, respectively and for the scaffold cultures to be 772 and 2.83 x 10(5) copies, respectively per starting total RNA mass of 10 ng. The standards curves made from these linear DNA standards showed good linearity (R(2)=0.9964 and 0.9902 for osteocalcin and beta-actin standards graphs), ranged from 10 to 10(9) copies and of comparable accuracy to current absolute quantification real-time PCR methods (which used plasmid standards obtained through molecular cloning methods). Our method might be a viable and more user-friendly alternative to current absolute quantification real-time PCR protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2006.09.011 | DOI Listing |
Eur J Clin Pharmacol
September 2025
Department of Clinical Pharmacy and Pharmacology, University of Groningen, and University Medical Center Groningen, Groningen, The Netherlands.
Purpose: Non-adherence to inhaled medication poses a significant clinical and economic burden on patients with respiratory diseases. This narrative review provides an overview of key aspects of hair analysis, in general and specific for inhaled medications, and explores the potential of hair analysis as a novel tool to monitor adherence to inhaled medications.
Methods: PubMed searches were conducted to explore four aspects: (1) mechanisms of (inhaled) drug's systemic absorption and deposition in hair; (2) quantification of drugs in hair; (3) factors impacting (inhaled) drug hair concentrations; and (4) clinical studies assessing inhaled medication adherence through hair analysis.
Pract Lab Med
September 2025
Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
Background: Nucleic Acid Amplification Tests (NAAT) remain one of the most reliable methods for pathogen identification. Given the high false-negative rates associated with traditional staining and microscopic examination, the time-consuming nature and low sensitivity of bacterial culture methods, as well as the inability of conventional NAAT to achieve absolute quantification.
Methods: To achieve rapid and quantitative detection of , we selected the 23S rRNA gene as the target for identification and developed a droplet digital PCR detection method.
Paediatr Child Health
August 2025
Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Objectives: Cobb angle is a standard method for quantification of scoliosis in adolescent idiopathic scoliosis to guide treatment decisions. Precise and timely curve detection can ensure early referrals, amenable for bracing. Radiology reports serve as a guiding tool for family physicians to expedite specialist referrals.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2025
Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.
View Article and Find Full Text PDFACS Appl Bio Mater
September 2025
Department of Mechanical Engineering, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan.
Albumin and γ-globulin concentrations in an electrolyte solution have been quantified by a multivariate-regressive Gaussian admittance relaxation times distribution (mgARTD). The mgARTD is built based on the training data consisting of the impedance spectroscopy system measurement result of protein mixture solutions with a known concentration of albumin, γ-globulin, and sodium electrolyte to perform concentration quantification on a prospective protein mixture solution with an unknown concentration. The mgARTD consists of three steps: (1) Prediction step of the peak matrix by Gaussian ARTD (gARTD) with the Gaussian process and peak detection algorithm, (2) Training step of the approximated coefficient matrix ̃ based on the multivariate-regressive formula = + (: multivariate-regression coefficient matrix, : error matrix, and : known concentration matrix of the training data set), and (3) Quantification step of the approximated concentration ̃ based on the Gauss-Newton algorithm from the predicted of the quantification data and the approximated ̃.
View Article and Find Full Text PDF