98%
921
2 minutes
20
The ubiquitin proteasome system is a key regulator of many biological processes in all eukaryotes. This mechanism employs several types of enzymes, the most important of which are the ubiquitin E3 ligases that catalyse the attachment of polyubiquitin chains to target proteins for their subsequent degradation by the 26S proteasome. Among the E3 families, the SCF is the best understood; it consists of a multi-protein complex in which the F-box protein plays a crucial role by recruiting the target substrate. Strikingly, nearly 700 F-box proteins have been predicted in Arabidopsis, suggesting that plants have the capacity to assemble a multitude of SCF complexes, possibly controlling the stability of hundreds of substrates involved in a plethora of biological processes. Interestingly, viruses and even pathogenic bacteria have also found ways to hijack the plant SCF and to reprogram it for their own purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbi.2006.09.003 | DOI Listing |
Targeted protein degradation (TPD) through the ubiquitin-proteasome system is driven by compound-mediated polyubiquitination of a protein-of-interest by an E3 ubiquitin (Ub) ligase. To date, relatively few E3s have been successfully utilized for TPD and the governing principles of functional ternary complex formation between the E3, degrader, and protein target remain elusive. FBXO22 has recently been harnessed by several groups to target different proteins for degradation.
View Article and Find Full Text PDFJ Invertebr Pathol
August 2025
State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China. Electronic address:
Pébrine disease, caused by the microsporidium Nosema bombycis, represents a significant challenge to the sericulture industry. To enhance the resistance of silkworm, we developed a transgenic strain (designated N-F12) expressing a single-chain fragment variable antibody F12 (scFvF12), targeting the critical transmembrane protein NbTMP1 of N. bombycis.
View Article and Find Full Text PDFUnlabelled: Chloroplasts play a central role in plant responses to environmental stress. Little is known, however, about how chloroplast homeostasis is maintained during stress responses that place high metabolic and bioenergetic demands on the cell. As a chloroplast-derived retrograde signal, jasmonate (JA) promotes broad-spectrum immunity by triggering the degradation of JAZ transcriptional repressors that act in the nucleus to control chloroplast metabolism.
View Article and Find Full Text PDFVirulence
December 2025
State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, China.
The ubiquitin-proteasome system (UPS) regulates protein degradation in eukaryotes by polyubiquitinating substrate proteins, with F-box proteins serving as key components for substrate recognition. Research has shown that the absence of Cdc4, an F-box protein in , decreases virulence, yet the mechanisms by which Cdc4 affects these processes remain unclear. Using an iTRAQ-based proteomic strategy, we recognized Ribonuclease H2 subunit B (Rnh2B) as a target substrate for Cdc4.
View Article and Find Full Text PDFPlant Sci
August 2025
Key Laboratory of Forest and Flower Genetics and Breeding of Ministry of Education, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China. Electronic address:
Populus euphratica glycine-rich RNA-binding protein 2 (PeGRP2) has been previously shown to destabilize target mRNAs and negatively regulates salt tolerance of poplar. This study aimed to explore the post-translational regulation of PeGRP2 in the salt-resistant poplar. PeGRP2 was demonstrated to interact with more axillary growth 2 (PeMAX2), an F-box leucine-rich repeat protein.
View Article and Find Full Text PDF