Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeted protein degradation (TPD) through the ubiquitin-proteasome system is driven by compound-mediated polyubiquitination of a protein-of-interest by an E3 ubiquitin (Ub) ligase. To date, relatively few E3s have been successfully utilized for TPD and the governing principles of functional ternary complex formation between the E3, degrader, and protein target remain elusive. FBXO22 has recently been harnessed by several groups to target different proteins for degradation. FBXO22 recruitment has been enabled through degraders that covalently modify its cysteine residues. Here, we reveal that the aldehyde derivative of UNC10088 promotes cooperative binding of FBXO22 to NSD2, a histone methyltransferase and oncogenic protein, leading to a cryo-EM structure of the full SKP1-CUL1-F-box (SCF)-FBXO22 complex with NSD2. This structure revealed a conformational change in the FBXO22 loop surrounding C326, further exposing the cysteine for covalent recruitment. Additional medicinal chemistry efforts led to the discovery of benzaldehyde-based non-prodrug degraders that similarly engage C326 of FBXO22 and potently degrade NSD2. Furthermore, unlike many degraders, our molecules recruit NSD2 to a different surface of FBXO22 than the known FBXO22 substrate BACH1, allowing for concurrent complex formation and degradation of both the neosubstrate and endogenous substrates. Overall, we demonstrate the biochemical and structural basis for NSD2 degradation, revealing key principles for efficient and selective TPD by SCF-FBXO22.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407915PMC
http://dx.doi.org/10.1101/2025.08.29.673087DOI Listing

Publication Analysis

Top Keywords

structural basis
8
basis nsd2
8
nsd2 degradation
8
complex formation
8
fbxo22
7
nsd2
6
degradation
5
degradation targeted
4
targeted recruitment
4
recruitment scf-fbxo22
4

Similar Publications

Ultrafast Correlation Energy Estimator.

J Phys Chem A

September 2025

Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.

A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.

View Article and Find Full Text PDF

Slimmer Geminals For Accurate F12 Electronic Structure Models.

J Chem Theory Comput

September 2025

Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States.

The Slater-type F12 geminal length scales originally tuned for the second-order Mo̷ller-Plesset F12 method are too large for higher-order F12 methods formulated using the SP (diagonal fixed-coefficient spin-adapted) F12 ansatz. The new geminal parameters reported herein reduce the basis set incompleteness errors (BSIEs) of absolute coupled-cluster singles and doubles F12 correlation energies by a significant─and increase with the cardinal number of the basis─margin. The effect of geminal reoptimization is especially pronounced for the cc-pVZ-F12 basis sets (specifically designed for use with F12 methods) relative to their conventional aug-cc-pVZ counterparts.

View Article and Find Full Text PDF

Integrins bind ligands between their alpha (α) and beta (β) subunits and transmit signals through conformational changes. Early in chordate evolution, some α subunits acquired an "inserted" (I) domain that expanded integrin's ligand-binding repertoire but obstructed the ancestral ligand pocket, seemingly blocking conventional integrin activation. Here, we compare cryo-electron microscopy structures of apo and ligand-bound states of the I domain-containing αEβ integrin and the I domain-lacking αβ integrin to illuminate how the I domain intrinsically mimics an extrinsic ligand to preserve integrin function.

View Article and Find Full Text PDF

Quantum low-density parity-check (QLDPC) codes offer a promising path to low-overhead fault-tolerant quantum computation but lack systematic strategies for exploration. In this Letter, we establish a topological framework for studying the bivariate-bicycle codes, a prominent class of QLDPC codes tailored for real-world quantum hardware. Our framework enables the investigation of these codes through universal properties of topological orders.

View Article and Find Full Text PDF

There is no vaccine for severe malaria. STEVOR antigens on the surface of -infected red blood cells are implicated in severe malaria and are targeted by neutralizing antibodies, but their epitopes remain unknown. Using computational immunology, we identified highly immunogenic overlapping B- and T-cell epitopes (referred to as multiepitopes, 7-27 amino acids) in the semiconserved domain of four STEVORs linked with severe malaria and clinical immunity.

View Article and Find Full Text PDF