SNAP-25 in hippocampal CA3 region is required for long-term memory formation.

Biochem Biophys Res Commun

Laboratory of Higher Brain Functions, Institute of Neurobiology, Institutes of Brain Science, Fudan University, 220 Han-Dan Road, Shanghai 200433, China.

Published: September 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SNAP-25 is a synaptosomal protein of 25 kDa, a key component of synaptic vesicle-docking/fusion machinery, and plays a critical role in exocytosis and neurotransmitter release. We previously reported that SNAP-25 in the hippocampal CA1 region is involved in consolidation of contextual fear memory and water-maze spatial memory (Hou et al. European J Neuroscience, 20: 1593-1603, 2004). SNAP-25 is expressed not only in the CA1 region, but also in the CA3 region, and the SNAP-25 mRNA level in the CA3 region is higher than in the CA1 region. Here, we provide evidence that SNAP-25 in the CA3 region is also involved in learning/memory. Intra-CA3 infusion of SNAP-25 antisense oligonucleotide impaired both long-term contextual fear memory and water-maze spatial memory, with short-term memory intact. Furthermore, the SNAP-25 antisense oligonucleotide suppressed the long-term potentiation (LTP) of field excitatory post-synaptic potential (fEPSP) in the mossy-fiber pathway (DG-CA3 pathway), with no effect on paired-pulse facilitation of the fEPSP. These results are consistent with the notion that SNAP-25 in the hippocampal CA3 region is required for long-term memory formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2006.06.184DOI Listing

Publication Analysis

Top Keywords

ca3 region
20
snap-25 hippocampal
12
ca1 region
12
snap-25
9
hippocampal ca3
8
region
8
region required
8
required long-term
8
long-term memory
8
memory formation
8

Similar Publications

Hippocampal subfield activity in schizophrenia: Effects of the disease course.

Schizophr Res

September 2025

Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA. Electronic address:

Alterations in hippocampal structure and function are established in schizophrenia. However, the specific patterns of hippocampal activity along the schizophrenia course remain unknown. Eighty-five study participants [34 schizophrenia probands (SZ), 32 first-degree relatives (REL), 19 healthy controls (HC)] underwent 3Tesla ultra-high resolution brain MRI (Vascular Space Occupancy); relative cerebral blood volume (rCBV)-an index of regional activity-was estimated across hippocampal subfields: dentate gyrus (DG), CA3, CA1, and subiculum (SUB).

View Article and Find Full Text PDF

Aging-related adaptations of metabotropic glutamate receptors within the CA3 region of the rat hippocampus.

Neurobiol Aging

September 2025

Departamento de Farmacobiología. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 14330, Mexico. Electronic address:

The physiological decline associated with aging is often accompanied by a progressive deterioration in cognitive processing abilities driven by a series of cellular dysfunctions that remain poorly understood. In the hippocampus, a critical area for learning and memory, aging affects the functional expression of ionotropic and metabotropic receptors, including the metabotropic glutamate receptors (mGluRs). mGluRs play a critical role in multiple cellular functions, including modulation of ion channels and intrinsic excitability, synaptic transmission, and induction of synaptic plasticity, processes considered part of the cellular substrates for learning and memory.

View Article and Find Full Text PDF

Study on the mechanism of Fangxia Dihuang Formula(FXDH) in treating breast cancer complicated with depression through the regulation of M1/M2 microglial polarization via the PERK/eIF2α axis. In addition to control group and 4T1 group, a mouse model of breast cancer complicated with depression was established using 4T1 cells combined with corticosterone. The mice were divided into model group, PERK/eIF2α signaling axis agonist(CCT020312, 2 mg·kg~(-1)·d~(-1)) group, CCT020312(2 mg·kg~(-1)·d~(-1)) + FXDH(13.

View Article and Find Full Text PDF

The hippocampus, including the cornu ammonis (CA) and dentate gyrus (DG) subregions, is a brain area highly susceptible to seizure-like activity (SLA). Most studies conducted in vivo have been performed in a single hippocampal subregion. In our study, we used the high [K] (HK) model of SLA to investigate the role of oscillatory activity in predicting SLA and in its modulation by anti-epileptic drugs in the three hippocampal subregions (CA1, CA3 and DG).

View Article and Find Full Text PDF

The majority of immune-mediated disease (IMD) risk loci are located in non-coding regions of the genome, making it difficult to decipher their functional effects in relevant physiological contexts. To assess the extent to which alternative splicing contributes to IMD risk, we mapped genetic variants associated with alternative splicing (splicing quantitative trait loci or sQTL) in macrophages exposed to a wide range of environmental stimuli. We found that genes involved in innate immune response pathways undergo extensive differential splicing in response to stimulation and detected significant sQTL effects for over 5734 genes across all stimulation conditions.

View Article and Find Full Text PDF