Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ultrafast relaxation dynamics of charge carriers in CdSe quantum wires with diameters between 6 and 8 nm are studied as a function of carrier density. At high electron-hole pair densities above 10(19) cm(-3) the dominant process for carrier cooling is the "bimolecular" Auger recombination of one-dimensional (1D) excitons. However, below this excitation level an unexpected transition from a bimolecular (exciton-exciton) to a three-carrier Auger relaxation mechanism occurs. Thus, depending on excitation intensity, electron-hole pair relaxation dynamics in the nanowires exhibit either 1D or 0D (quantum dot) character. This dual nature of the recovery kinetics defines an optimal intensity for achieving optical gain in solution-grown nanowires given the different carrier-density-dependent scaling of relaxation rates in either regime.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl060199zDOI Listing

Publication Analysis

Top Keywords

three-carrier auger
8
relaxation dynamics
8
electron-hole pair
8
exciton recombination
4
recombination dynamics
4
dynamics cdse
4
cdse nanowires
4
nanowires bimolecular
4
bimolecular three-carrier
4
auger kinetics
4

Similar Publications

Colloidal Cu-doped CdSe/CdS core/shell semiconductor nanocrystals (NCs) are investigated in their as-prepared and degenerately n-doped forms using time-resolved photoluminescence and transient-absorption spectroscopies. Photoluminescence from Cu:CdSe/CdS NCs is dominated by recombination of delocalized conduction-band (CB) electrons with copper-localized holes. In addition to prominent bleaching of the first excitonic absorption feature, transient-absorption measurements show bleaching of the sub-bandgap copper-to-CB charge-transfer (MLCT) absorption band and also reveal a photoinduced midgap valence-band (VB)-to-copper charge-transfer (LMCT) absorption band that extends into the near-infrared, as predicted by recent computations.

View Article and Find Full Text PDF

Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.

Acc Chem Res

June 2013

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.

Semiconducting nanomaterials such as single-walled carbon nanotubes (SWCNTs) and nanocrystals (NCs) exhibit unique size-dependent quantum properties. They have therefore attracted considerable attention from the viewpoints of fundamental physics and functional device applications. SWCNTs and NCs also provide an excellent new stage for experimental studies of many-body effects of electrons and excitons on optical processes in nanomaterials.

View Article and Find Full Text PDF

Solution-based II-VI core/shell nanowire heterostructures.

J Am Chem Soc

November 2008

Department of Chemistry and Biochemistry and Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA.

We demonstrate the solution-phase synthesis of CdS/CdSe, CdSe/CdS, and CdSe/ZnTe core/shell nanowires (NWs). On the basis of bulk band offsets, type-I and type-II heterostructures are made, contributing to the further development of low-dimensional heteroassemblies using solution-phase chemistry. Core/shell wires are prepared by slowly introducing shell precursors into a solution of premade core NWs dispersed in a noncoordinating solvent at moderate temperatures (215-250 degrees C).

View Article and Find Full Text PDF

Ultrafast relaxation dynamics of charge carriers in CdSe quantum wires with diameters between 6 and 8 nm are studied as a function of carrier density. At high electron-hole pair densities above 10(19) cm(-3) the dominant process for carrier cooling is the "bimolecular" Auger recombination of one-dimensional (1D) excitons. However, below this excitation level an unexpected transition from a bimolecular (exciton-exciton) to a three-carrier Auger relaxation mechanism occurs.

View Article and Find Full Text PDF