Coarsening of topological defects in oscillating systems with quenched disorder.

Phys Rev E Stat Nonlin Soft Matter Phys

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.

Published: April 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We use large scale simulations to study interacting particles in two dimensions in the presence of both an ac drive and quenched disorder. As a function of ac amplitude, there is a crossover from a low drive regime where the colloid positions are highly disordered to a higher ac drive regime where the system dynamically reorders. We examine the coarsening of topological defects formed when the system is quenched from a disordered low ac amplitude state to a high ac amplitude state. When the quench is performed close to the disorder-order crossover, the defect density decays with time as a power law with alpha = 1/4 to 1/3. For deep quenches, in which the ac drive is increased to high values such that the dynamical shaking temperature is strongly reduced, we observe a logarithmic decay of the defect density into a grain boundary dominated state. We find a similar logarithmic decay of defect density in systems containing no pinning. We specifically demonstrate these effects for vortices in thin film superconductors, and discuss implications for dynamical reordering transition studies in these systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.73.046122DOI Listing

Publication Analysis

Top Keywords

defect density
12
coarsening topological
8
topological defects
8
quenched disorder
8
drive regime
8
amplitude state
8
logarithmic decay
8
decay defect
8
defects oscillating
4
oscillating systems
4

Similar Publications

Self-propulsive active nematics.

Philos Trans A Math Phys Eng Sci

September 2025

Niels Bohr Institute, University of Copenhagen, Kobenhavn, Capital Region of Denmark 2100, Denmark.

Increasing evidence suggests that active matter exhibits instances of mixed symmetry that cannot be fully described by either polar or nematic formalism. Here, we introduce a minimal model that integrates self-propulsion into the active nematic framework. Our linear stability analyses reveal how self-propulsion shifts the onset of instability, fundamentally altering the dynamical landscape.

View Article and Find Full Text PDF

Indium tin oxide (Sn/InO) is a degenerately doped semiconductor nanocrystal (NC) that exhibits localized surface plasmon resonance (LSPR) in the short-wavelength infrared electromagnetic spectral range. Alternative to metals, the tunability of LSPR is possible in doped semiconductor NCs by controlling the dopant type, doping level, and opto-electrochemical modulation. In this study, dopant oxidation valency in carrier density and LSPR peaks (Sn(IV): 1.

View Article and Find Full Text PDF

Nε-lysine acetylation in the lumen of the ER requires two acetyltransferases, ATase1/NAT8B and ATase2/NAT8. They are type II membrane proteins and belong to the larger GNAT superfamily of acetyltransferases. Their enzymatic activity is tightly coupled to the import of acetyl-CoA in the lumen of the ER by AT-1/SLC33A1.

View Article and Find Full Text PDF

With the acceleration of global industrialization, a large amount of polluted wastewater is discharged indiscriminately, which both pollutes the environment and threatens human health. In this study, by constructing a binary system of unsaturated polyester resin/carboxychitosan, and improving the inherent defects of carboxychitosan aerogel, we successfully prepared aerogels with high porosity, low density, and laminar porous structure for water remediation by using a combination of the sol-gel method and directional freezing technology. Thanks to the synergistic effect of surface wettability and special pore structure, the aerogel not only adsorbs and separates MB and Pb(II) efficiently with a separation efficiency of more than 99 %, but also has a separation efficiency of 99.

View Article and Find Full Text PDF

Synapse refinement through the elimination of excess synapses is crucial for proper neuronal circuitry during development and adulthood, and the phagocytic activity of astrocytes plays an important role in this process. Failure to remove excess synapses can lead to neurological and neurodevelopmental disorders like epilepsy and autism spectrum disorder (ASD). The adhesion G protein-coupled receptor BAI1/ADGRB1 contributes to phagocytosis in various tissues, including the clearance of apoptotic myoblasts in skeletal muscle and epithelial cells in the intestine.

View Article and Find Full Text PDF