98%
921
2 minutes
20
A kinetic analysis of the photosynthesis inhibition by buffers allowed quantification of some components of the carbon concentrating mechanism (CCM) of the brown macroalga Laminaria saccharina. The CCM was based on the presence of acid regions outside the plasma membrane that increased the CO(2) concentration available for photosynthesis by 10-20 times above that of the bulk medium at alkaline pH. Furthermore, the results suggested that the CCM is located mainly on the cell membrane and not in the chloroplast, as suggested for most macroalgae. The degree of dissipation of the acid regions by a buffer was related to the buffer anion concentration (B(-)), estimated from the titration of the buffer from bulk medium pH to a pH endpoint value close to the first pK (a) of the carbonic acid system. A kinetic model describing the relationship between inhibition of photosynthesis by a buffer and B(-) was developed suggesting that buffers act as competitive inhibitors with IC(50) (the concentration of the buffer anion which reduces the reaction velocity by half) of 5.0 mol m(-3). This model can be used to estimate the inhibitory effect of any buffer on the photosynthesis of L. saccharina. Nevertheless, some buffers tested showed a lower effect than that predicted from the hyperbolic model suggesting that their strength as inhibitors depended on: (1) the pK (a) in relation to the first pK (a) of the carbonic acid system and (2) its molecular weight (i.e. its mobility).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11120-006-9039-y | DOI Listing |
Environ Toxicol Chem
September 2025
Univ. Savoie Mont Blanc, CNRS. EDYTEM.
The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.
View Article and Find Full Text PDFPhotosynth Res
September 2025
College of Life Sciences, Shanghai Normal University, Shanghai, 200235, China.
Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, P.R. China.
Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.
View Article and Find Full Text PDFmSphere
September 2025
Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.
Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.
View Article and Find Full Text PDFEnviron Sci Process Impacts
September 2025
NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, 1023-1063 Shatai Nan Road, Guangzhou 510515, China.
Triclosan (TCS) has raised concerns due to its widespread use and potential neuroendocrine toxicity. However, its neurological effects and the interplay between TCS-induced sex hormone disruption and neurological outcomes in adults remain largely unexplored. Herein, we analyzed data from 2717 adults in the 2011-2014 National Health and Nutrition Examination Survey, employing logistic regression, restricted cubic spline, and mediation analyses to investigate the association between TCS exposure and neurological outcomes.
View Article and Find Full Text PDF