Protons @ interfaces: implications for biological energy conversion.

Biochim Biophys Acta

AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.

Published: August 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The review focuses on the anisotropy of proton transfer at the surface of biological membranes. We consider (i) the data from "pulsed" experiments, where light-triggered enzymes capture or eject protons at the membrane surface, (ii) the electrostatic properties of water at charged interfaces, and (iii) the specific structural attributes of proton-translocating enzymes. The pulsed experiments revealed that proton exchange between the membrane surface and the bulk aqueous phase takes as much as about 1 ms, but could be accelerated by added mobile pH-buffers. Since the accelerating capacity of the latter decreased with the increase in their electric charge, it was concluded that the membrane surface is separated from the bulk aqueous phase by a barrier of electrostatic nature. The barrier could arise owing to the water polarization at the negatively charged membrane surface. The barrier height depends linearly on the charge of penetrating ions; for protons, it has been estimated as about 0.12 eV. While the proton exchange between the surface and the bulk aqueous phase is retarded by the interfacial barrier, the proton diffusion along the membrane, between neighboring enzymes, takes only microseconds. The proton spreading over the membrane is facilitated by the hydrogen-bonded networks at the surface. The membrane-buried layers of these networks can eventually serve as a storage/buffer for protons (proton sponges). As the proton equilibration between the surface and the bulk aqueous phase is slower than the lateral proton diffusion between the "sources" and "sinks", the proton activity at the membrane surface, as sensed by the energy transducing enzymes at steady state, might deviate from that measured in the adjoining water phase. This trait should increase the driving force for ATP synthesis, especially in the case of alkaliphilic bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2006.02.015DOI Listing

Publication Analysis

Top Keywords

membrane surface
20
bulk aqueous
16
aqueous phase
16
surface bulk
12
proton
9
surface
9
proton exchange
8
proton diffusion
8
membrane
7
phase
5

Similar Publications

The molecular electrometer at 40.

Biochim Biophys Acta Biomembr

September 2025

Department of Chemistry, University of Toronto, Canada; Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada. Electronic address:

In 1987 Seelig and colleagues proposed that the phosphocholine headgroup of phosphatidylcholine behaved as a universal sensor of surface electrostatic charge, both cationic and anionic, in lipid bilayers (J. Seelig, P.M.

View Article and Find Full Text PDF

Using the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca cross-linked PG/PG pairs and PG/3adLPG ion pairs.

View Article and Find Full Text PDF

Electro-interactions: A review of the effects of electric fields on bacterial cells.

Biotechnol Adv

September 2025

DTU-Food, Research Group for Food Production Engineering, Laboratory of Nano-BioScience, Technical University of Denmark, Henrik Dams Allé, B202, 2800 Kongens Lyngby, Denmark. Electronic address:

Electric fields significantly influence bacterial cells by altering their physiology, membrane properties, membrane potential, and permeability, as well as their metabolism and mobility. These interactions result in observable changes in growth rates, cellular morphology, and gene expression. This review provides a comprehensive examination of the effects of electric fields on bacterial cells, focusing specifically on mechanisms such as electro-stimulation, electroporation, electrophoresis, and dielectrophoresis.

View Article and Find Full Text PDF

Glycolipids are key structural and functional components of biological membranes, yet their interfacial hydration behavior remains poorly understood. Here, we use vibrational heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy to probe the molecular structure of the air-water interface formed by monolayers of ohmline, a glycolipid bearing a lactose headgroup and carrying no formal charge. Upon electrolyte addition, we observe a striking reorientation of interfacial water and a reversal of the HD-SFG signal, indicative of apparent surface charging by an otherwise neutral headgroup.

View Article and Find Full Text PDF

Despite the tremendous potential of cancer immunotherapy, its clinical benefits remain limited. Cytotoxic T lymphocyte (CTL)-mediated immune responses rely on the secretion of perforin and granzyme B (GZMB) to induce apoptosis in tumor cells. The mannose-6-phosphate receptor (M6PR) on tumor cell membranes can recognize GZMB and promote its internalization in a perforin-independent manner.

View Article and Find Full Text PDF