Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spatial and temporal characteristics of airborne dust over Asia during springs of 2000, 2001 and 2002 were simulated with a mineral dust entrainment and deposition model (DEAD) embedded in a global model of atmospheric transport and chemistry (MATCH) using the real-time meteorological data as forcing fields. The results show a good agreement of the pattern of model-simulated atmospheric dust concentration with the distribution of surface-observed spring dust storm frequency and a significant correlation between the simulated dust aerosol optical depth (DAOD) and satellite-observed aerosol index (AI). These results validate applicability of the integrated model in simulating dust entrainment, transportation and deposition and describing spatial and temporal characteristics of dust loading over the Asian continent. In addition, an attempt was made to explore possible paths of dust transportation by use of correlation analyses between the simulated dust emission flux (DEF) and DAOD.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spatial temporal
12
temporal characteristics
12
dust
10
characteristics airborne
8
airborne dust
8
dust asia
8
asia springs
8
springs 2000
8
dust entrainment
8
simulated dust
8

Similar Publications

Drift velocity of bacterial chemotaxis in dynamic chemical environments.

Philos Trans A Math Phys Eng Sci

September 2025

School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU, UK.

Chemotaxis allows swimming bacteria to navigate through chemical landscapes. To date, continuum models of chemotactic populations (e.g.

View Article and Find Full Text PDF

In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice of both sexes.

View Article and Find Full Text PDF

Postnatal interaction of size and shape in the human endocranium and brain structures.

J Anat

September 2025

Department of Biological Sciences (Anthropology), Graduate School of Science, The University of Tokyo, Tokyo, Japan.

The uniqueness of human brain growth and development has been considered promising for its contribution to understanding the origins of the unique human cognitive abilities. Compared with that of chimpanzees, the human endocranium undergoes several characteristic shape changes immediately after birth, which has been termed "endocranial globularization." However, how the brain structures and surrounding neurocranium interact with each other during early development in the context of brain-neurocranium integration remains to be investigated.

View Article and Find Full Text PDF

Spatial heterogeneity in the impacts of Ohio's enhanced graduated driver's licensing law on teen motor vehicle crashes.

J Safety Res

September 2025

Center for Injury Research and Policy, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Division of Epidemiology, College of Public Health, USA.

Background: Graduated Driver's Licensing (GDL) policies create an intermediate licensure phase for young novice drivers, and previous studies suggested that they reduce teen motor- vehicle crashes (MVCs). Multiple studies have shown that the effects of GDL laws vary in association with demographic factors and location, motivating estimation of sub-state policy effects. The present study estimates county-level effects of Ohio's 2007 enhanced GDL law on MVCs among 16-17-year-olds.

View Article and Find Full Text PDF

The effect of recurrent seizures on the gradual deterioration of the white matter structural network and the potential molecular mechanisms that underlie the baseline and longitudinal changes in network topology in temporal lobe epilepsy (TLE) remain unclear. Therefore, we used diffusion tensor imaging (DTI) scans and neuropsychiatric assessments for 28 patients with unilateral TLE at baseline and follow-up, and for 28 healthy controls (HC). The topological properties of the structural network were calculated using graph theoretical analyses.

View Article and Find Full Text PDF