Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Activation of sphingosine kinase-1 (SK1) by overexpression or agonist stimulation promotes cell proliferation, survival, and anti-apoptosis. Studies on the function of endogenous SK1 are lacking. Endogenous SK1 has been shown to be down-regulated under stress, and knockdown of the enzyme reduces the percentage of viable MCF-7 breast cancer cells (Taha, T. A. et al. 2004. J. Biol. Chem. 279, 20546-20554). In this study, we examined the mechanisms by which SK1 loss affects the growth of cells. Knockdown of the enzyme by small interfering RNA caused cell cycle arrest and induced apoptosis. Cell death involved effector caspase activation, cytochrome c release and Bax oligomerization in the mitochondrial membrane, thus placing SK1 knockdown upstream of the mitochondrial pathway of apoptosis. SK1 knockdown also induced significant increases in ceramide levels in whole cells and in mitochondria enriched fractions of cells. Inhibition of de novo sphingolipid biosynthesis with myriocin significantly attenuated Bax oligomerization and downstream caspase activation after SK1 loss. These studies for the first time implicate endogenous SK1 as an important survival enzyme in MCF-7 cells and link the biological consequences of knocking down the enzyme to its biochemical role as a regulator of sphingolipid metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.05-4412fjeDOI Listing

Publication Analysis

Top Keywords

endogenous sk1
12
sphingosine kinase-1
8
cell death
8
sk1
8
knockdown enzyme
8
sk1 loss
8
caspase activation
8
bax oligomerization
8
sk1 knockdown
8
cells
5

Similar Publications

The mechanism underlying the biological effects caused by an extremely low-frequency electromagnetic field (ELF-EMF) is still unclear. Previously, we found that L-type calcium channel and sphingosine kinase 1 (SK1) were involved in 50-Hz MF exposure-induced cell proliferation. In the present study, the role of intracellular Ca and signal molecules related to SK1 in cell proliferation induced by 50-Hz MF was investigated in human amniotic epithelial (FL) cells.

View Article and Find Full Text PDF

Resolvins (Rvs) are endogenous lipid mediators that promote resolution of inflammation and return to homeostasis. We previously reported that RvD1 both facilitates M2 macrophage polarization of Kupffer cells (KCs) and efferocytosis and modulates thioredoxin 2-mediated mitochondrial quality control in liver ischemia/reperfusion (IR) injury. However, the specific cellular or molecular targets of RvD1 remain poorly understood.

View Article and Find Full Text PDF

Sphingosine kinase 2 promotes lipotoxicity in pancreatic β-cells and the progression of diabetes.

FASEB J

March 2019

Department of Endocrinology and Metabolism, Fudan Institute for Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.

Loss of functional β-cell mass caused by lipotoxicity is a key pathogenic factor in the development of type 2 diabetes mellitus (T2DM). We have previously reported that sphingosine kinase (SK)1 is an endogenous protector of β-cells against lipotoxicity. The current study reports that SK2, another isoform of SK, is a crucial mediator of lipotoxicity in β-cells.

View Article and Find Full Text PDF

Background/aims: Sphingosine 1-phosphate (S1P) is considered as a key molecule regulating various cell functions including cell growth and death. It is produced by two sphingosine kinases (SK) denoted as SK-1 and SK-2. Whereas SK-1 has been extensively studied and has been appointed a role in promoting cell growth, the function of SK-2 is controversial, and both pro-proliferative and pro-apoptotic functions have been suggested.

View Article and Find Full Text PDF

Sphingosine kinase 1 (SK1) is a lipid kinase whose activity produces sphingosine 1-phosphate, a prosurvival lipid associated with proliferation, angiogenesis, and invasion. SK1 overexpression has been observed in numerous cancers. Recent studies have demonstrated that SK1 proteolysis occurs downstream of the tumor suppressor p53 in response to several DNA-damaging agents.

View Article and Find Full Text PDF