Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic human disorder characterized by obesity, retinopathy, polydactyly, renal and cardiac malformations, learning disabilities, and hypogenitalism. Eight BBS genes representing all known mapped loci have been identified. Mutation analysis of the known BBS genes in BBS patients indicate that additional BBS genes exist and/or that unidentified mutations exist in the known genes. To identify new BBS genes, we performed homozygosity mapping of small, consanguineous BBS pedigrees, using moderately dense SNP arrays. A bioinformatics approach combining comparative genomic analysis and gene expression studies of a BBS-knockout mouse model was used to prioritize BBS candidate genes within the newly identified loci for mutation screening. By use of this strategy, parathyroid hormone-responsive gene B1 (B1) was found to be a novel BBS gene (BBS9), supported by the identification of homozygous mutations in BBS patients. The identification of BBS9 illustrates the power of using a combination of comparative genomic analysis, gene expression studies, and homozygosity mapping with SNP arrays in small, consanguineous families for the identification of rare autosomal recessive disorders. We also demonstrate that small, consanguineous families are useful in identifying intragenic deletions. This type of mutation is likely to be underreported because of the difficulty of deletion detection in the heterozygous state by the mutation screening methods that are used in many studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1285160PMC
http://dx.doi.org/10.1086/498323DOI Listing

Publication Analysis

Top Keywords

bbs genes
16
gene expression
12
small consanguineous
12
bbs
10
bardet-biedl syndrome
8
autosomal recessive
8
bbs patients
8
homozygosity mapping
8
snp arrays
8
comparative genomic
8

Similar Publications

Understanding the molecular basis of regulated nitrogen (N) fixation is essential for engineering N-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability.

View Article and Find Full Text PDF

Truncating Mutations in BBS10 and BBS12 Impair Proteostasis and Ciliary Architecture in Bardet-Biedl Syndrome.

Exp Eye Res

September 2025

Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Eye institu

Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by genetic heterogeneity. Despite significant progress in understanding the BBSome-coding genes associated with ciliopathies, the pathogenesis linked to mutations in chaperonin-coding genes (BBS6, BBS10, and BBS12) remains poorly defined. This study aims to confirm the genetic diagnosis of BBS and elucidate the pathological mechanisms in causative genes of BBS10 and BBS12.

View Article and Find Full Text PDF

The diversity of antibodies underpins robust immune responses. During the formation of the antibody repertoire in early bone marrow B-cells, random antibody heavy-chain proteins are generated from recombined VH, DH, and JH gene segments. Many are non-functional and are negatively selected.

View Article and Find Full Text PDF

Genome-wide identification of heat shock protein gene family and their response to chronic heat stress in skeletal muscle of black rockfish (Sebastes schlegelii).

Fish Shellfish Immunol

September 2025

MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572025, China. Electronic add

Functioning as molecular chaperones, heat shock proteins (HSPs) are rapidly upregulated under stress conditions, safeguarding cells against damage induced by heat, mechanical injury, and chemical agents. Despite their critical physiological roles, a comprehensive genome-wide characterization of HSP genes has been lacking for Sebastes schlegelii, a commercially important coastal benthic fish. In this study, we systematically identified the HSP gene family and analyzed its expression profiles.

View Article and Find Full Text PDF

Understanding how amyloid beta (Aβ) plaques develop and lead to neurotoxicity in Alzheimer's disease remains a major challenge, particularly given the temporal delay and weak correlation between plaque deposition and cognitive decline. This study investigates how the evolving pathology of plaques affects the surrounding tissue, using a knock-in Aβ mouse model (App). We combined mass spectrometry imaging with stable isotope labeling to timestamp Aβ plaques from the moment of their initial deposition, enabling us to track their aging spatially.

View Article and Find Full Text PDF