Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Understanding how amyloid beta (Aβ) plaques develop and lead to neurotoxicity in Alzheimer's disease remains a major challenge, particularly given the temporal delay and weak correlation between plaque deposition and cognitive decline. This study investigates how the evolving pathology of plaques affects the surrounding tissue, using a knock-in Aβ mouse model (App). We combined mass spectrometry imaging with stable isotope labeling to timestamp Aβ plaques from the moment of their initial deposition, enabling us to track their aging spatially. By integrating spatial transcriptomics, we linked changes in gene expression to the age of the plaques, independent of the mice's chronological age or disease stage. Here we show that older plaques were associated with reduced expression of synaptic genes. Additionally, when correlated with structure-specific dyes, we show that plaque age positively correlated with structural maturation. These more compact and older plaques were linked to greater synapse loss and increased toxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12402145 | PMC |
http://dx.doi.org/10.1038/s41467-025-63328-y | DOI Listing |