High-density sampling differential display of prokaryotic mRNAs with RAP-PCR.

Methods Mol Biol

Central Research and Development, E. I. DuPont de Nemours Co., Wilmington, DE, USA.

Published: April 2006


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A high-throughput approach to prokaryotic differential display has been developed. A large number of reverse transcription polymerase chain reactions (RT-PCR) are performed on total RNA isolated from induced and control bacterial cultures. Each RT-PCR reaction uses a single oligonucleotide primer and constitutes an independent sampling of the mRNA population. The large number of reactions performed allows the repeated sampling of the targeted polycistronic mRNA, which is clearly identified among possible false positives.

Download full-text PDF

Source
http://dx.doi.org/10.1385/1-59259-968-0:085DOI Listing

Publication Analysis

Top Keywords

differential display
8
large number
8
high-density sampling
4
sampling differential
4
display prokaryotic
4
prokaryotic mrnas
4
mrnas rap-pcr
4
rap-pcr high-throughput
4
high-throughput approach
4
approach prokaryotic
4

Similar Publications

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF

Background: Disulfidptosis, a novel cellular death manner, has yet to be fully explored within the context of pulmonary arterial hypertension (PAH). This study aims to identify genes implicated in PAH that are involved in disulfidptosis.

Method: Based on data from the GEO database, this study employed co-expression analysis, Weighted Gene Co-Expression Network Analysis (WGCNA), hub gene identification, and Gene Set Enrichment Analysis (GSEA) to uncover genes associated with PAH and disulfidptosis.

View Article and Find Full Text PDF

Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).

View Article and Find Full Text PDF