98%
921
2 minutes
20
The role of nitric oxide (NO) as a regulator of cardiac contraction was suggested in the early nineties, but a consensual view of its main functions in cardiac physiology has only recently emerged with the help of experiments using genetic deletion or overexpression of the three nitric oxide synthase (NOS) isoforms in cardiomyocytes. Contrary to the effects of exogenous, pharmacologic NO donors, signaling by endogenous NO is restricted to intracellular effectors co-localized with NOS in specific subcellular compartments. This both ensures coordinate signaling by the three NOS isoforms on different aspects of the cardiomyocyte function and helps to reconcile previous apparently contradictory observations based on the use of non-isoform-specific NOS inhibitors. This review will emphasize the role of NOS on excitation-contraction coupling in the normal and diseased heart. Endothelial NOS and neuronal NOS contribute to maintain an adequate balance between adrenergic and vagal input to the myocardium and participate in the early and late phases of the Frank-Starling adaptation of the heart. At the early phases of cardiac diseases, inducible NOS reinforces these effects, which may become maladaptive as disease progresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1341.016 | DOI Listing |
J Appl Physiol (1985)
September 2025
Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine at Texas Health Presbyterian Hospital Dallas, TX, USA.
We investigated the impact of short-term dietary nitrate supplementation on sympathetic neural responses to isometric exercise in postmenopausal women. Ten healthy women aged 64±2 (SD) years participated in this randomized, placebo-controlled, double-blind, crossover study. All participants underwent two-week beetroot juice (BRJ: 800 mg nitrate/day) and placebo (nitrate-depleted BRJ) interventions with ≥14 days of wash-out.
View Article and Find Full Text PDFPhotobiomodul Photomed Laser Surg
September 2025
Department of Oral and Maxillofacial Diagnostic Sciences, Dental College and Hospital, Taibah University, Medina, Saudi Arabia.
Photobiomodulation (PBM) therapy involves the use of low-dose, nonionizing light to reduce pain and inflammation, promote wound healing, and enhance tissue regeneration. PBM-based therapy of various dental conditions is associated with improved treatment outcomes. This study aims to critically review the literature to highlight the underlying molecular biological mechanisms and clinical applications of PBM in modern dental practice.
View Article and Find Full Text PDFJ Intern Med
September 2025
Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany.
Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
Atherosclerosis (AS) is a chronic inflammatory disease driven by endothelial dysfunction, vascular smooth muscle cell proliferation, and insufficient resolution of inflammation. Nitric oxide (NO) plays a crucial role in vascular homeostasis by promoting endothelial cell proliferation, maintaining endothelial integrity, suppressing smooth muscle cell hyperplasia, and exerting potent anti-inflammatory effects. However, clinical application of NO is hindered by its short half-life, lack of targeting, and uncontrolled release.
View Article and Find Full Text PDFFront Allergy
August 2025
Department of Surgery, University of Auckland, Auckland, New Zealand.
Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) are common respiratory conditions that significantly impact patient health and contribute to substantial healthcare burdens. While conventional treatments offer symptom relief, many patients continue to experience persistent symptoms, side effects, or resistance to standard therapies. This highlights the growing need for novel, non-invasive, and sustainable therapeutic strategies to manage chronic airway inflammation.
View Article and Find Full Text PDF