98%
921
2 minutes
20
The dominant theoretical approach to causal learning postulates the acquisition of associative weights between cues and outcomes. This reduction of causal induction to associative learning implies that learners are insensitive to important characteristics of causality, such as the inherent directionality between causes and effects. An ongoing debate centers on the question of whether causal learning is sensitive to causal directionality (as is postulated by causal-model theory) or whether it neglects this important feature of the physical world (as implied by associationist theories). Three experiments using different cue competition paradigms are reported that demonstrate the competence of human learners to differentiate between predictive and diagnostic learning. However, the experiments also show that this competence displays itself best in learning situations with few processing demands and with convincingly conveyed causal structures. The study provides evidence for the necessity to distinguish between competence and performance in causal learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/bf03196064 | DOI Listing |
Environ Sci Technol
September 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
While the cancer genome is well-studied, the nongenetic exposome of cancer remains elusive, particularly for regionally prevalent cancers with poor prognosis. Here, by employing a combined knowledge- and data-driven strategy, we profile the chemical exposome of plasma from 53 healthy controls, 14 esophagitis and 101 esophageal squamous cell carcinoma (ESCC) patients, and 46 esophageal tissues across 12 Chinese provinces, integrating inorganic, endogenous, and exogenous chemicals. We first show that components of the ESCC chemical exposome mediate the relationship between ESCC-related dietary/lifestyle factors and clinic health status indicators.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Social Epidemiology, Graduate School of Medicine and School of Public Health, Kyoto University, Kyoto, Japan.
Importance: Previous studies have suggested that social participation helps prevent depression among older adults. However, evidence is lacking about whether the preventive benefits vary among individuals and who would benefit most.
Objective: To examine the sociodemographic, behavioral, and health-related heterogeneity in the association between social participation and depressive symptoms among older adults and to identify the individual characteristics among older adults expected to benefit the most from social participation.
Arch Microbiol
September 2025
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.
View Article and Find Full Text PDFPlant Mol Biol
September 2025
Institute of Biological Chemistry, The Washington State University, Pullman, WA, 99164, USA.
Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.
View Article and Find Full Text PDFBrief Bioinform
August 2025
Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an 710004, China.
Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets.
View Article and Find Full Text PDF