A conserved, extended chromatin opening within alpha-globin locus during development.

Exp Cell Res

National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China.

Published: September 2005


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Histone modifications play an important role in eukaryotic gene regulation. However, the dynamic alteration of histone modification during development is poorly understood. In addition, the relationship between histone modification and globin gene switching remains unclear. Here, we assessed the dynamic pattern of histone modification (H3 acetylation, H4 acetylation, H3 K4 methylation, and H3 K79 methylation) along the murine alpha-globin locus, as well as along the human alpha-globin locus in transgenic mice, during globin gene switching in vivo. During the switching, histone modification at embryonic zeta-gene and fetal/adult alpha-genes displayed different developmental patterns. The level of histone modification at zeta-gene was developmentally regulated, in accordance with the level of zeta-gene expression, whereas the alpha-genes kept high level of histone modification at both developmental stages, regardless of their expression levels. Histone deacetylase inhibition selectively increased acetylation at the inactive zeta-gene in fetal livers, although it did not reactivate the gene expression. More importantly, an obvious increasing of histone modification level at major regulatory elements and fetal/adult alpha-genes was observed during the switching, suggesting that a conserved, extended chromatin opening within the locus occurs during globin gene switching.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2005.05.015DOI Listing

Publication Analysis

Top Keywords

histone modification
28
alpha-globin locus
12
globin gene
12
gene switching
12
histone
9
conserved extended
8
extended chromatin
8
chromatin opening
8
fetal/adult alpha-genes
8
level histone
8

Similar Publications

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Unraveling epigenetic drivers of immune evasion in gliomas: mechanisms and therapeutic implications.

Front Immunol

September 2025

Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.

Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.

View Article and Find Full Text PDF

Many organisms have adapted to survive anoxic or hypoxic environments, but the epigenetic responses involved in this successful stress response are not well described in most species. Embryos of the annual killifish have the greatest tolerance to anoxia of all vertebrates, making them a powerful model to study the cellular mechanisms necessary for anoxia tolerance. However, the global histone landscape of this species has never been quantified or explored in relation to stress tolerance.

View Article and Find Full Text PDF

Research status of small molecule inhibitors, probes, and degraders of NSDs: a comprehensive review.

Future Med Chem

September 2025

Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, P.R. China.

The nuclear receptor binding SET domain (NSD) family of histone methyltransferases, which comprised NSD1, NSD2, and NSD3. They play a pivotal role in catalyzing mono- and dimethylation of histone H3 at lysine 36 (H3K36me1/2), a modification critical for maintaining chromatin structure and transcriptional fidelity. Dysregulation of NSD enzymes, often through overexpression, mutation, or chromosomal translocation, has been implicated in a broad spectrum of malignancies and various diseases.

View Article and Find Full Text PDF

The flexibility of the spatio-temporal genome replication program during development and disease highlights the regulatory role of plastic epigenetic mechanisms over genetic determinants. Histone post-translational modifications are broadly implicated in replication timing control, yet the specific mechanisms through which individual histone marks influence replication dynamics, particularly in heterochromatin, remain unclear. Here, we demonstrate that H3K36me3 dynamically enriches at pericentromeric heterochromatin, composed of major satellite DNA repeats, prior to replication during mid S phase in mouse embryonic stem cells.

View Article and Find Full Text PDF