Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recent increase in tropospheric ozone (O(3)) concentrations promotes additional oxidative stress through the production of reactive oxygen species (ROS) in plant tissues, resulting in the activation of genes whose products enable the stressed cells to retain their integrity and function. This response is made possible by an integration of highly regulated signaling networks that mediate the perception of, and response to, this oxidative assault. In Arabidopsis thaliana, ROS-induced signaling has been shown to flow through a protein phosphorylation cascade involving the mitogen-activated protein kinases (MAPKs) AtMPK3 (MPK3) and AtMPK6 (MPK6). We found that RNAi-mediated silencing of MPK6 renders the plant more sensitive to ozone, as determined by visible leaf damage. The MPK6-RNAi genotype also displayed a more intense and prolonged activation of MPK3 compared to that of WT plants. An MPK3 loss-of-function genotype is similarly very sensitive to ozone, and displays an abnormally prolonged MPK6 activation profile, suggesting reciprocity in regulation between these two MAPKs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2005.04.017DOI Listing

Publication Analysis

Top Keywords

mitogen-activated protein
8
sensitive ozone
8
rna interference-based
4
interference-based rnai
4
rnai suppression
4
suppression atmpk6
4
atmpk6 arabidopsis
4
arabidopsis mitogen-activated
4
protein kinase
4
kinase hypersensitivity
4

Similar Publications

CpG-A induces liquid-liquid phase separation of HMGB1 to activate the RAGE-mediated inflammatory pathway.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) pathway-also known as the RAS/RAF/MEK/ERK pathway-is a critical signalling cascade involved in regulating cell growth, proliferation, and survival. First discovered in the early 1980s, the pathway's extracellular signal-regulated kinase (ERK) subfamily was identified in the 1990s. The ERK family includes several isoforms-ERK1, ERK2, ERK3, ERK5, and ERK6-with ERK1 (MAPK3) and ERK2 (MAPK1) being the most well-characterised and playing central roles in MAPK signalling.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) play a crucial role in disease control by establishing symbiotic relationships with plant roots. AMF improve salinity tolerance in plants by regulating the Na/K ratio through selective ion transport and mediate osmotic regulation by inducing the accumulation of osmotic-compatible solutes such as glycine betaine and proline to enable plant cells to maintain water content and the metabolic balance. AMF can also activate antioxidant defense responses by stimulating enzymes that protect plant cells from harmful oxidation and pathological infections.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.

View Article and Find Full Text PDF

Knockdown of translocon-associated protein subunit beta (TRAPβ) stimulates cell cycle arrest and apoptosis in human colorectal cancer cells.

Biochim Biophys Acta Mol Cell Res

September 2025

Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland College Park, College Park, MD, 20742, USA. Electronic address:

Translocon-associated protein subunit beta (TRAPβ), also known as signal sequence receptor 2 (SSR2) serves as an auxiliary protein facilitating co-translational translocation in the endoplasmic reticulum (ER); however, its role in colorectal cancer is unknown to date. The objectives of the current study are to examine if TRAPβ/SSR2 knockdown affects the cell proliferation and to elucidate mechanisms by which TRAPβ/SSR2 regulates proliferation of human colorectal cancer. We silenced TRAPβ/SSR2 transiently and stably in human colorectal cancer cell lines and analyzed cell proliferative properties.

View Article and Find Full Text PDF