Deformed wing virus (DWV) has long been identified as a critical pathogen affecting honeybees, contributing to colony losses through wing deformities, neurological impairments, and reduced lifespan. Since DWV also affects other pollinators, it poses a significant threat to global pollination networks. While honeybees have been the focal point of DWV studies, emerging research indicates that this RNA virus is not host-specific but rather a generalist pathogen capable of infecting a wide range of insect species, including other bee species such as bumblebees and solitary bees, as well as wasps and ants.
View Article and Find Full Text PDFDeformed wing virus (DWV), a major honey bee pathogen, is a generalist insect virus detected in diverse insect phyla, including numerous ant genera. Its clinical symptoms have only been reported in honey bees, bumble bees, and wasps. DWV is a quasispecies virus with three main variants, which, in association with the ectoparasitic mite, , causes wing deformity, shortened abdomens, neurological impairments, and colony mortality in honey bees.
View Article and Find Full Text PDFThe tawny crazy ant, (Mayr) (Hymenoptera: Formicidae) has a native range that extends from northern Argentina to southern Brazil. In the U.S.
View Article and Find Full Text PDFNezara viridula (L.) (Hemiptera: Pentatomidae), commonly known in the U.S.
View Article and Find Full Text PDFBagrada hilaris (Burmeister) is an invasive pest of economically important crops in the United States. During physiological investigations of B. hilaris, a flagellated protozoan was discovered in the alimentary canal of many specimens.
View Article and Find Full Text PDFGlycosyl inositol phosphorylceramide (GIPC) sphingolipids are a major class of lipids in fungi, protozoans, and plants. GIPCs are abundant in the plasma membrane in plants, comprising around a quarter of the total lipids in these membranes. Plant GIPCs contain unique glycan decorations that include a conserved glucuronic acid (GlcA) residue and various additional sugars; however, no proteins responsible for glycosylating GIPCs have been identified to date.
View Article and Find Full Text PDFThe Golgi apparatus is the central organelle in the secretory pathway and plays key roles in glycosylation, protein sorting, and secretion in plants. Enzymes involved in the biosynthesis of complex polysaccharides, glycoproteins, and glycolipids are located in this organelle, but the majority of them remain uncharacterized. Here, we studied the Arabidopsis (Arabidopsis thaliana) membrane proteome with a focus on the Golgi apparatus using localization of organelle proteins by isotope tagging.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2010
As one of the most abundant polysaccharides on Earth, xylan will provide more than a third of the sugars for lignocellulosic biofuel production when using grass or hardwood feedstocks. Xylan is characterized by a linear β(1,4)-linked backbone of xylosyl residues substituted by glucuronic acid, 4-O-methylglucuronic acid or arabinose, depending on plant species and cell types. The biological role of these decorations is unclear, but they have a major influence on the properties of the polysaccharide.
View Article and Find Full Text PDFIn Arabidopsis thaliana, ozone-induced signaling has been shown to involve the mitogen-activated protein kinases (MAPKs) MPK3 and MPK6. To identify a possible ozone-induced mitogen-activated protein kinase kinase (MAPKK) involved in the activation of these specific MAPKs, we employed RNA interference-(RNAi)-based suppression of MKK5, a known cognate MAPKK to both MPK3 and MPK6. When exposed to ozone, activation of both MPK3 and MPK6 was markedly reduced in the MKK5-suppressed plants compared to WT.
View Article and Find Full Text PDFIn Arabidopsis thaliana, oxidant-induced signalling has been shown to utilize the mitogen-activated protein kinase (MAPK), AtMPK6. To identify proteins whose accumulation is altered by ozone in an AtMPK6-dependent manner we employed isotope-coded affinity tagging (ICAT) technology to investigate the impact of AtMPK6-suppression on the protein profiles in Arabidopsis both before (air control) and during continuous ozone (O(3)) fumigation (500 nL L(-1) for 8 h). Among the 150 proteins positively identified and quantified in the O(3)-treated plants, we identified thirteen proteins whose abundance was greater in the AtMPK6-suppressed genotype than in wild-type (WT).
View Article and Find Full Text PDFMannans are hemicellulosic polysaccharides that have previously been implicated as structural constituents of cell walls and as storage reserves but which may serve other functions during plant growth and development. Several members of the Arabidopsis cellulose synthase-like A (CSLA) family have previously been shown to synthesise mannan polysaccharides in vitro when heterologously expressed. It has also been found that CSLA7 is essential for embryogenesis, suggesting a role for the CSLA7 product in development.
View Article and Find Full Text PDFThe recent increase in tropospheric ozone (O(3)) concentrations promotes additional oxidative stress through the production of reactive oxygen species (ROS) in plant tissues, resulting in the activation of genes whose products enable the stressed cells to retain their integrity and function. This response is made possible by an integration of highly regulated signaling networks that mediate the perception of, and response to, this oxidative assault. In Arabidopsis thaliana, ROS-induced signaling has been shown to flow through a protein phosphorylation cascade involving the mitogen-activated protein kinases (MAPKs) AtMPK3 (MPK3) and AtMPK6 (MPK6).
View Article and Find Full Text PDFPlant mitogen-activated protein kinase (MAPK) cascades are important amplifying modules that can rapidly transduce stress signals into various appropriate intracellular responses. Several extracellular regulated kinase (ERK)-type MAPKs involved in plant defense signaling have been identified in herbaceous species, but no MAPK cascade has yet been characterized in a tree species. We examined the signal transduction events that lead to activation of defense mechanisms in poplar, a major forest species of economic and ecological importance which is becoming the model tree system for studying stress and adaptation responses.
View Article and Find Full Text PDF