98%
921
2 minutes
20
Here we examine the response of succulents in a global biodiversity hot spot to experimental warming consistent with a future African climate scenario. Passive daytime warming (averaging 5.5 degrees C above ambient) of the natural vegetation was achieved with 18 transparent hexagonal open-top chamber arrays randomized in three different quartz-field communities. After 4-months summer treatment, the specialized-dwarf and shrubby succulents displayed between 2.1 and 4.9 times greater plant and canopy mortalities in the open-top chambers than in the control plots. Those surviving in cooler ventilated areas and shaded refuges in the chambers had lower starch concentrations and water contents; the shrubby succulents also exhibited diminished chlorophyll concentrations. It is concluded that current thermal regimes are likely to be closely proximate to tolerable extremes for many endemic succulents in the region, and that anthropogenic warming could significantly exceed their thermal thresholds. Further investigation is required to elucidate the importance of associated moisture deficits in these warming experiments, a potential consequence of supplementary (fog and dew) precipitation interception by open-top chambers and higher evaporation therein, on plant mortalities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1469-8137.2004.01243.x | DOI Listing |
Ecology
September 2025
Graduate Program in Ecology and Evolutionary Biology, Biosciences Rice University, Houston, Texas, USA.
Changes in global temperature regimes are expected to transform species interactions in natural communities. However, predicting the consequences of warming on populations and communities is challenging because species interact with a range of community members. In theory, species should be adapted to their local temperature regimes, which might suggest a parallel shift across species interactions.
View Article and Find Full Text PDFBiol Open
September 2025
Laboratorio de Ecofisología e Historia de vida de Reptiles, Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, 8400 San Carlos
Global warming threatens biodiversity, particularly affecting ectothermic animals, which must seek refuge to avoid overheating when ambient temperatures exceed their critical thresholds. Extended shelter use limits the time for essential activities such as foraging, social interactions, and reproduction, potentially reducing survival and increasing local extinction risk. Viviparous Liolaemids inhabiting cold-temperate Andean regions are considered vulnerable to rising temperatures and are predicted to experience local extinctions this century.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
State Key Laboratory of Tropical Oceanography, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sanya National Marine Ecosyst
Short-term marine heatwaves, driven by global climate change, frequently occur in coastal areas and increasingly threaten seagrass meadows by raising temperatures, which impair their ecological functions. Lignocellulose, a key component of plant cell walls, is crucial for maintaining plant morphology and resilience. However, empirical evidence on the response of seagrass lignocellulose to short-term marine heatwaves is limited.
View Article and Find Full Text PDFJ Exp Biol
September 2025
School of Energy and Environment and State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Kowloon, Hong Kong, China.
Rapid climatic fluctuations, such as heatwaves, are key drivers of ecological disruption and pose significant physiological challenges to ectothermic organisms, yet their capacity for short- or long-term adaptation and transgenerational effects remain poorly understood. Using the model freshwater zooplankton Daphnia magna, we experimentally tested the physiological resilience, acclimation, and evolutionary responses in D. magna across multiple generations under simulated heatwave conditions.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
2-Chlorobutane (2CB) and 2-aminobutane (2AB) are chiral compounds, which play a crucial role in biological complexity. These compounds can be released into the air through natural and man-made processes. Their emission into the atmosphere may influence the air quality and climate significantly.
View Article and Find Full Text PDF