Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Little is known about the in vivo assembly pathway or structure of the hepatitis C virus nucleocapsid. In this work the intermediates of HCcAg multimerization in Pichia pastoris cells and the nucleic acid binding properties of structured nucleocapsid-like particles (NLPs) were studied. Extensive cross-linking was observed for HCcAg after glutaraldehyde treatment. Data suggest that HCcAg exists in dimeric forms probably representing P21-P21, P21-P23, and P23-P23 dimers. In addition, the presence of HCcAg species that might represent trimers and multimers was observed. After sucrose equilibrium density gradient purification and nuclease digestion, NLPs were shown to contain both RNA and DNA molecules. Finally, the analysis by electron microscopy indicated that native NLPs were resistant to nuclease treatment. These results indicated that HCcAg assembles through dimers, trimers, and multimers' intermediates into capsids in P. pastoris cells. Assembly of NLPs in its natural environment might confer stability to these particles by adopting a compact structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2004.08.189DOI Listing

Publication Analysis

Top Keywords

nucleic acid
8
acid binding
8
binding properties
8
multimerization pichia
8
pichia pastoris
8
pastoris cells
8
hccag
5
properties intermediates
4
intermediates hcv
4
hcv core
4

Similar Publications

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Programmable Dual-Phase Electrochemical Biosensor Combines Homogeneous CRISPR/Cas12a Activation with Interfacial Poly-G Signaling for miRNA-21 Detection.

Anal Chem

September 2025

Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China.

Despite the promise of electrochemical biosensors in amplified nucleic acid diagnostics, existing high-sensitivity platforms often rely on a multilayer surface assembly and cascade amplification confined to the electrode interface. These stepwise strategies suffer from inefficient enzyme activity, poor mass transport, and inconsistent probe orientation, which compromise the amplification efficiency, reproducibility, and practical applicability. To address these limitations, we report a programmable dual-phase electrochemical biosensing system that decouples amplification from signal transduction.

View Article and Find Full Text PDF

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.

View Article and Find Full Text PDF