98%
921
2 minutes
20
Maximum likelihood principal component regression (MLPCR) is an errors-in-variables method used to accommodate measurement error information when building multivariate calibration models. A hindrance of MLPCR has been the substantial demand on computational resources sometimes made by the algorithm, especially for certain types of error structures. Operations on these large matrices are memory intensive and time consuming, especially when techniques such as cross-validation are used. This work describes the use of wavelet transforms (WT) as a data compression method for MLPCR. It is shown that the error covariance matrix in the wavelet and spectral domains are related through a two-dimensional WT. This allows the user to account for any effects of the wavelet transform on spectral and error structures. The wavelet transform can be applied to MLPCR when using either the full error covariance matrix or the smaller pooled error covariance matrix. Simulated and experimental near-infrared data sets are used to demonstrate the benefits of using wavelets with the MLPCR algorithm. In all cases, significant compression can be obtained while maintaining favorable predictive ability. Considerable time savings were also attained, with improvements ranging from a factor of 2 to a factor of 720. Using the WT-compressed data in MLPCR gave a reduction in prediction errors compared to using the raw data in MLPCR. An analogous reduction in prediction errors was not always seen when using PCR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/0003702041389382 | DOI Listing |
Biometrika
December 2024
Department of Biostatistics, Johns Hopkins University, 605 N Wolfe Street, Baltimore, Maryland 21215, U.S.A.
This article addresses the asymptotic performance of popular spatial regression estimators of the linear effect of an exposure on an outcome under spatial confounding, the presence of an unmeasured spatially structured variable influencing both the exposure and the outcome. We first show that the estimators from ordinary least squares and restricted spatial regression are asymptotically biased under spatial confounding. We then prove a novel result on the infill consistency of the generalized least squares estimator using a working covariance matrix from a Matérn or squared exponential kernel, in the presence of spatial confounding.
View Article and Find Full Text PDFStat Med
September 2025
Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, USA.
Background: Binary endpoints measured at two timepoints-such as pre- and post-treatment-are common in biomedical and healthcare research. The Generalized Bivariate Bernoulli Model (GBBM) provides a specialized framework for analyzing such bivariate binary data, allowing for formal tests of covariate-dependent associations conditional on baseline outcomes. Despite its potential utility, the GBBM remains underutilized due to the lack of direct implementation in standard statistical software.
View Article and Find Full Text PDFArch Phys Med Rehabil
September 2025
Department of Physical Therapy, University of Delaware, Newark, DE, USA; Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA. Electronic address:
Objective: To examine if exercise intensity, quantified as heart rate or training speed, predicts walking outcomes in people with chronic stroke.
Design: This is a secondary analysis from a larger randomized clinical trial ("PROWALKS"; NIH1R01HD086362).
Setting: Four, outpatient rehabilitation clinics.
Neuroimage
September 2025
Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston,
Fetal brain development is a complex and dynamic process, and its disruption can lead to significant neurological disorders. Early detection of brain aberrations during pregnancy is critical for optimizing postnatal medical intervention. We propose a deep generative anomaly detection framework, conditional cyclic variational autoencoding generative adversarial network (CCVAEGAN), that can identify structural brain anomalies using fetal brain magnetic resonance imaging.
View Article and Find Full Text PDFJ Comput Biol
September 2025
The NeuroCognitive Institute (NCI) Clinical Research Foundation, Mount Arlington, New Jersey, USA.
The general linear model (GLM) has been widely used in research, where the error term has been treated as noise. However, compelling evidence suggests that in biological systems, the target variables may possess their innate variances. A modified GLM was proposed to explicitly model biological variance and nonbiological noise.
View Article and Find Full Text PDF