Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endomorphin 1 (EM1) and endomorphin 2 (EM2) are the endogenous peptides with high affinity and selectivity for the mu-opioid receptor (MOR). We examined whether or not EM1- and EM2-expressing hypothalamic neurons might send their axons to the parabrachial nucleus (PBN), where many MOR-expressing neurons have been observed. Immunofluorescence histochemistry was combined with fluorescent retrograde tract-tracing method. In the rats injected with Fluoro-Gold (FG) into the PBN, some of EM1- and EM2-immunoreactive hypothalamic neurons were labeled retrogradely with FG. The majority of the EM1/FG and EM2/FG double-labeled neurons were distributed in the dorsomedial hypothalamus nucleus, centromedial hypothalamic region, and arcuate nucleus; a few of them were also seen in the periventricular hypothalamic nucleus and posterior hypothalamic nucleus. Endomorphins released from PBN-projecting hypothalamic neurons may modulate the gustatory, autonomic and nociceptive functions through MOR-expressing PBN neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2003.12.079DOI Listing

Publication Analysis

Top Keywords

hypothalamic neurons
12
send axons
8
axons parabrachial
8
parabrachial nucleus
8
hypothalamic nucleus
8
neurons
7
nucleus
6
hypothalamic
6
endomorphin endomorphin
4
endomorphin 2-like
4

Similar Publications

Hypocretin: a promising target for the regulation of homeostasis.

Front Neurosci

August 2025

Beijing Life Science Academy, Beijing, China.

Hypocretin, also known as orexin, is a hypothalamic neuropeptide that regulates essential physiological processes including arousal, energy metabolism, feeding behavior, and emotional states. Through widespread projections and two G-protein-coupled receptors-HCRT-1R and HCRT-2R-the hypocretin system exerts diverse modulatory effects across the central nervous system. The role of hypocretin in maintaining wakefulness is well established, particularly in narcolepsy type 1 (NT1), where loss of hypocretin neurons leads to excessive daytime sleepiness and cataplexy.

View Article and Find Full Text PDF

Objectives: To investigate the role of a neural pathway from oxytocin (OXT) neurons in the hypothalamic paraventricular nucleus (PVN) to γ-aminobutyric acid (GABA) neurons in the trigeminal nucleus caudalis (TNC) in regulating pain sensitization in a mouse model of chronic migraine and to explore the underlying mechanisms.

Methods: A chronic migraine model was established by intraperitoneal injection of nitroglycerin (NTG, 10 mg/kg) on days 1, 3, 5, 7, and 9. The study consisted of four parts: PartⅠ: Wild-type C57BL/6J mice were divided into 4 groups (=6 in each), receiving single or repeated injection of NTG or saline, respectively.

View Article and Find Full Text PDF

Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.

View Article and Find Full Text PDF

The maintenance of extracellular fluid (ECF) osmolality and sodium concentration ([Na]) near optimal "set point" values sustains physiological functions and prevents pathological states such as hypo- and hypernatremia. The peptide hormones vasopressin (antidiuretic hormone) and oxytocin (a natriuretic hormone in rats) play key roles in this process. These hormones are synthesized by hypothalamic magnocellular neurosecretory cells (MNCs) that project to the neurohypophysis and are released into the systemic circulation in response to rises in ECF osmolality or [Na].

View Article and Find Full Text PDF

The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.

View Article and Find Full Text PDF