98%
921
2 minutes
20
Objective: To assess the effects of age and joint disease on hydroxyproline and glycosaminoglycan (GAG) concentrations in synovial fluid from the metacarpophalangeal joint of horses and evaluate the association of those concentrations with severity of osteoarthritis and general matrix metalloproteinase (MMP) activity.
Sample Population: Synovial fluid was collected from the metacarpophalangeal joints of foals at birth (n = 10), 5-month-old foals (10), 11-month-old foals (5), and adult horses (73).
Procedure: Hydroxyproline and GAG concentrations were determined in synovial fluid samples. The severity of osteoarthritis in adult joints was quantified by use of a cartilage degeneration index (CDI) and assessment of general MMP-activity via a fluorogenic assay.
Results: Hydroxyproline and GAG concentrations in synovial fluid were highest in neonates and decreased with age. Concentrations reached a plateau in adults by 4 years and remained constant in healthy joints. In synovial fluid from osteoarthritic joints, hydroxyproline and GAG concentrations were not increased, compared with unaffected joints, but hydroxyproline were significantly correlated with the CDI and general MMP activity. There was no significant correlation between GAG concentration and CDI value or MMP activity.
Conclusions And Clinical Relevance: Changes in hydroxyproline concentration in synovial fluid appeared to indicate damage to collagen of the articular cartilage. In joints with osteoarthritis, the lack of high GAG concentration in synovial fluid and the absence of a significant correlation between GAG concentration and CDI values or MMP activity may severely limit the usefulness of this marker for monitoring equine joint disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2460/ajvr.2004.65.296 | DOI Listing |
Rheumatol Int
September 2025
Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Fatih, 34093, Istanbul, Turkey.
Behçet disease (BD) is a chronic, relapsing inflammatory disorder, and human leukocyte antigen (HLA)-B*51 is considered to be the strongest genetic susceptibility factor. The integrated stress response (ISR), defined by the eIF2α/ATF4 axis, is a signaling network that maintains protein homeostasis and regulates innate immunity in eukaryotic cells; pathological activation of this pathway can affect the immune response and cause various diseases. In this study, we aimed to investigate the role of the ISR signaling pathway in the pathogenesis of BD.
View Article and Find Full Text PDFConnect Tissue Res
September 2025
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
Osteoarthritis (OA), long regarded as simply a disease of articular cartilage degeneration, has increasingly been recognized as a complex disorder involving multiple joint tissues, including the synovium. This review explores the emerging evidence that synovial changes seen in OA are not merely secondary to cartilage breakdown but may actively drive OA progression. We detail the physiological role of the synovium in joint homeostasis and highlight pathological remodeling processes, such as synovial hyperplasia, immune cell infiltration, and fibroblast activation, that contribute to joint degeneration.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2025
Department of Orthopaedic Surgery, Sana Hospital Sommerfeld, Kremmen, Germany.
Purpose: This study aimed to determine diagnostic thresholds for synovial fluid leucocyte count and polymorphonuclear (PMN) percentage to identify the diagnosis periprosthetic joint infection (PJI) in patients with failed unicompartmental knee arthroplasties (UKAs).
Methods: This multicentre retrospective cohort study included 239 patients who underwent revision of an UKA for either septic or aseptic indications at five university-affiliated medical centres. Among these, 30 patients (13%) underwent revision for PJI and 209 (87%) for noninfectious causes.
Adv Healthc Mater
September 2025
Q. Li, K. Zou, Prof. Y. Zhang, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing
Osteoarthritis is a chronic, degenerative, and disabling disease affecting over 500 million people worldwide, leading to significant medical costs. Monitoring changes in the biochemical components of synovial fluid is crucial for understanding the onset and progression of osteoarthritis. However, this remains a challenge because the volume of synovial fluid is low, synovial tissue is prone to inflammation after mechanical injury, joint movement is frequent, and the space is limited, which poses significant limitations for the sensor-tissue interface and the size of the device.
View Article and Find Full Text PDFZhongguo Gu Shang
August 2025
Department of Basic Research, Institute of Orthopedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310053, Zhejiang, China.
Objective: To reveal the molecular basis of knee osteoarthritis (KOA) with Yang deficiency and blood stasis syndrome by analyzing the gene expression profiles in synovial fluid and blood of KOA patients with this syndrome.
Methods: A total of 80 KOA patients were recruited from October 2022 to June 2024, including 40 cases in the non- deficiency and blood stasis group (27 males and 13 females), with an average age of (61.75±3.