Comparison of different decontamination methods for reagents to detect low concentrations of bacterial 16S DNA by real-time-PCR.

Mol Biotechnol

Klinik und Poliklinik für Anästhesiologie und Spezielle Intensivmedizin, Universität Bonn, Sigmund Freud Strasse 25, D-53105 Bonn, Germany.

Published: November 2002


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contamination of polymerase chain reaction (PCR) reagents continues to be a major problem when consensus primers are used for detection of low concentrations of bacterial DNA. We designed a real-time polymerase chain reaction (PCR) for quantification of bacterial DNA by using consensus primers that bind specifically to the 16S region of bacterial DNA. We have tested four different methods of decontamination of PCR reagents in a project aimed at detecting bacterial DNA at low concentrations: deoxyribonuclease (DNAse) treatment, restriction endonuclease digestion, UV irradiation, and 8-methoxypsoralen in combination with long-wave UV light to intercalate contaminating DNA into double-stranded DNA. All four methods result in inhibition of the PCR reaction, and most of the decontamination procedures failed to eliminate the contaminating bacterial DNA. Only the DNAse decontamination proved to be efficient in eliminating contaminating DNA while conserving PCR efficiency. All four decontamination methods are time consuming and have the possibility of carrying new contamination into the reaction mixture. However, decontamination with DNAse may help, together with the use of highly purified PCR reagents, in detecting small amounts of bacterial DNA in clinical specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1385/MB:22:3:231DOI Listing

Publication Analysis

Top Keywords

bacterial dna
24
low concentrations
12
pcr reagents
12
dna
10
decontamination methods
8
concentrations bacterial
8
polymerase chain
8
chain reaction
8
reaction pcr
8
consensus primers
8

Similar Publications

Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.

View Article and Find Full Text PDF

In most eubacteria the initiator protein DnaA triggers chromosomal replication by forming an initiation complex at the origin of replication and also functions as a transcriptional regulator, coordinating gene expression with cell cycle progression. While DnaA-regulated genes are relatively well characterized in exponentially growing cells, its role in gene regulation during stationary phase remains insufficiently explored. Here, using an aquatic bacterium Caulobacter crescentus as a model, we show that C.

View Article and Find Full Text PDF

Supercoiled (Sc) circular DNA, such as plasmids, are essential in molecular biology and hold strong therapeutic potential. However, they are typically produced in Escherichia coli, resulting in bacterial methylations, unnecessary sequences, and contaminants that hinder certain applications including clinical uses. These limitations could be avoided by synthesizing plasmids entirely in vitro, but synthesizing high-purity Sc circular DNA biochemically remains a significant technical challenge.

View Article and Find Full Text PDF

CRISPR/Cas12a DTR system: a topology-guided Cas12a assay for specific dual detection of RNA and DNA targets.

Nucleic Acids Res

September 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Hubei 430042, China.

The CRISPR/Cas12a technology has revolutionized molecular diagnostics. However, existing Cas12a systems depend on continuous target DNA activation, which limits them to single-target detection. In this study, we developed a novel topology-guided Cas12a system, the double-target responsive (DTR) system, capable of being activated by noncontiguous dual RNA/DNA targets.

View Article and Find Full Text PDF

Isolation and characterization of Proteus mirabilis bacteriophage T2 and its application.

Microb Pathog

September 2025

Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural Unive

Public health problems caused by foodborne illnesses have become increasingly serious. Although it was usually regarded as an opportunistic pathogen causing urinary tract infections in humans, recent years have seen an increasing number of foodborne infections related to P. mirabilis.

View Article and Find Full Text PDF