98%
921
2 minutes
20
The immediate early gene tristetraprolin (TTP) is induced transiently in many cell types by numerous extracellular stimuli. TTP encodes a zinc finger protein that can bind and destabilize mRNAs that encode tumor necrosis factor-alpha (TNFalpha) and other cytokines. We hypothesize that TTP also has a broader role in growth factor-responsive pathways. In support of this model, we have previously determined that TTP induces apoptosis through the mitochondrial pathway, analogously to certain oncogenes and other immediate-early genes, and that TTP sensitizes cells to the pro-apoptotic signals of TNFalpha. In this study, we show that TTP and the related proteins TIS11b and TIS11d bind specifically to 14-3-3 proteins and that individual 14-3-3 isoforms preferentially bind to different phosphorylated TTP species. 14-3-3 binding does not appear to inhibit or promote induction of apoptosis by TTP but is one of multiple mechanisms that localize TTP to the cytoplasm. Our results provide the first example of 14-3-3 interacting functionally with an RNA binding protein and binding in vivo to a Type II 14-3-3 binding site. They also suggest that 14-3-3 binding is part of a complex network of stimuli and interactions that regulate TTP function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M110465200 | DOI Listing |
Acc Chem Res
September 2025
Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, United States.
ConspectusProtein-protein interactions (PPIs) play a key role in homeostasis and are often dysregulated in disease. PPIs were traditionally considered "undruggable" due to their flat surfaces and disordered domains. Recently, the identification of PPI stabilizers, or molecular glues (MGs), compounds that bind cooperatively to PPI interfaces, has provided a new direction for the field.
View Article and Find Full Text PDFFront Neurosci
August 2025
Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
Developmental and Epileptic Encephalopathy (DEE) is a severe neurological condition characterized by epileptic seizures and cognitive developmental impairments. Mutations in the YWHAG gene, which encodes the 14-3-3γ protein, are implicated in DEE. Predominantly expressed in the brain, 14-3-3γ regulates various cellular processes, forming homodimers or heterodimers with other isoforms.
View Article and Find Full Text PDFbioRxiv
August 2025
Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, MD 21702.
The RAF kinases (ARAF, BRAF and CRAF) are essential components of the RAS-ERK signaling pathway, which controls vital cellular processes and is frequently dysregulated in human disease. Notably, mutations that alter BRAF function are prominent drivers of human cancer and certain RASopathy disorders, making BRAF an important target for therapeutic intervention. Despite extensive research, several aspects of BRAF regulation remain unclear.
View Article and Find Full Text PDFChem Sci
August 2025
Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 210009 China
The NRF2 transcription factor is constitutively active in various cancers, functioning as an oncogenic driver for tumor progression and chemo/radiotherapy resistance. Despite the well-documented role of NRF2 overactivation in cancer, no targeted therapy is currently available. In this study, using a combination of phenotypic screening, chemoproteomics, and biochemical and cellular assays, we identified WS3 as a potent allosteric inhibitor of 14-3-3 that selectively inhibits NRF2 activity in tumor cells.
View Article and Find Full Text PDFMol Biol (Mosk)
August 2025
Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia (NAS RA), Yerevan, 0014 Armenia.
The study of the p53 protein and its interactions with other proteins is key to understanding the mechanisms by which p53 affects tumorigenesis. Mutations in the TP53 gene, which occur in approximately 50% of human cancers, often disrupt its function, highlighting its key role in tumorigenesis. Although structurally challenging due to the presence of unstructured regions, p53 has a well-documented role in DNA damage signaling and cancer progression.
View Article and Find Full Text PDF