Oxidative Nucleobase Modifications Leading to Strand Scission.

Chem Rev

Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850.

Published: May 1998


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1021/cr960421sDOI Listing

Publication Analysis

Top Keywords

oxidative nucleobase
4
nucleobase modifications
4
modifications leading
4
leading strand
4
strand scission
4
oxidative
1
modifications
1
leading
1
strand
1
scission
1

Similar Publications

Chlorine dioxide (ClO) is used for disinfection and preoxidation in water treatment, often as an alternative to free available chlorine (FAC) to reduce the formation of halogenated byproducts. However, the latest research has shown that FAC can be formed as a secondary oxidant in the ClO reaction with activated aromatic compounds, such as phenols. In this study, the reaction of ClO with aromatic nitrogen-containing heterocycles (NCHs) is investigated as another possible FAC precursor.

View Article and Find Full Text PDF

The use of nucleic acids as potential therapeutic tools, sensors, or biomaterials, among other applications, has dramatically increased. Among these, RNA aptamers are of interest due to an innate high specificity toward their cognate targets, which include small molecules, proteins, ions, or cells. In this work, we took advantage of the ability that 8-oxo-7,8-dihydroguanine (8-oxoG) has to participate in unique H-bonding interactions, and probed its use to increase/control the selectivity/affinity of aptamers of RNA and DNA.

View Article and Find Full Text PDF

Photosensitized damage by the mechanism of direct 1e transfer from a nucleobase to the metal complex is a complementary approach to type I and type II methods of photodynamic therapy. In this ultrafast spectroscopic study we report the ability of a nitrile infrared redox probe to report on the photo-oxidation of guanine-rich DNA, comprising persistent runs of guanine, by the dppz-10-CN containing complex [Ru(TAP)(dppz-10-CN)] (), dppz-10-CN = 10-cyano-dipyrido[3,2-a:2',3'-c]phenazine and TAP = 1,4,5,8-tetraazaphenanthrene. Our study reveals the ability of the enantiomers of to photo-oxidize guanine in double-stranded and quadruplex DNA.

View Article and Find Full Text PDF

DNA can be protonated in an acidic microenvironment and therefore may undergo denaturation. Specially, during photodynamic therapy, which usually proceeds via oxidation and nitration of the DNA bases of the cancer cells, protonation may result in DNA structural deformation and consequently accelerate its denaturation and destruction. In the present study, the effect of the protonation of cytosine (at N3), along with the oxidation/nitration of guanine, on the structural instability and possible denaturation of the double-strand dodecamer B-DNA has been investigated using ReaxFF reactive molecular dynamics (RMD) simulations.

View Article and Find Full Text PDF

The enzyme ABH2, one of nine human DNA dioxygenases of the AlkB family, belongs to the superfamily of Fe(II)/α-ketoglutarate-dependent dioxygenases and plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases. ABH2 has broad substrate specificity, directly oxidizing DNA damages such as -methyladenine, -methylcytosine, 1,-ethenoadenine, 3,-ethenocytosine, and a number of others. In our investigation, we sought to uncover the subtleties of the mechanisms governing substrate specificity in ABH2 by focusing on several critical amino acid residues situated in its active site.

View Article and Find Full Text PDF