Nonequilibrium phase transitions in directed small-world networks.

Phys Rev Lett

Instituto de Física de Cantabria, CSIC-UC, E-39005 Santander, Spain.

Published: January 2002


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many social, biological, and economic systems can be approached by complex networks of interacting units. In many of these systems relations are directed in the sense that links act only in one direction (outwards or inwards). We investigate the effect of directed links on the behavior of a simple spin-like model evolving on a small-world network. This model may describe for instance the dynamics of public opinion in social influence networks. We show that directed networks may lead to a highly nontrivial phase diagram including first- and second-order phase transitions out of equilibrium.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.88.048701DOI Listing

Publication Analysis

Top Keywords

phase transitions
8
nonequilibrium phase
4
directed
4
transitions directed
4
directed small-world
4
networks
4
small-world networks
4
networks social
4
social biological
4
biological economic
4

Similar Publications

Tuning the Electronic Structure in the MoS/SrTiO Heterojunction via Phase Evolution of the SrTiO Substrate.

ACS Nano

September 2025

Department of Chemical Physics, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

The coupling between transition metal dichalcogenides (TMDCs) and SrTiO has recently emerged as a fertile platform for discovering interfacial phenomena, where particle interactions, lattice coupling, and dielectric screening give rise to interesting physical effects. These hybrid systems hold significant promise for two-dimensional (2D) electronics, ferroelectric state control, and metastable phase engineering. However, effective modulation of the interfacial electronic structure remains a critical challenge.

View Article and Find Full Text PDF

Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.

View Article and Find Full Text PDF

The aims of this study were to investigate the effects of re-vitrification at the pronuclear (PN) stage of porcine embryos generated from vitrified oocytes on subsequent development and to clarify if re-vitrification is more feasible at the PN stage or at the blastocyst stage. Immature porcine oocytes at the germinal vesicle (GV) stage were vitrified/warmed and subjected to in vitro maturation, parthenogenetic activation (PA), and embryo culture. Subsequent parthenotes were either cultured without re-vitrification for 6 days (GV-vit group) or were re-vitrified 8 h after PA at the PN stage (GV-vit/PN-revit group), and after warming, cultured for 6 days.

View Article and Find Full Text PDF

Repopulating Microglia Suppress Peripheral Immune Cell Infiltration to Promote Poststroke Recovery.

CNS Neurosci Ther

September 2025

Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.

Aims: Sustained neuroinflammation following ischemic stroke impedes post-injury tissue repairment and neurological functional recovery. Developing innovative therapeutic strategies that simultaneously suppress detrimental inflammatory cascades and facilitate neurorestorative processes is critical for improving long-term rehabilitation outcomes.

Methods: We employed a microglia depletion-repopulation paradigm by administering PLX5622 for 7 days post-ischemia; followed by a 7-day withdrawal period to allow microglia repopulation.

View Article and Find Full Text PDF

A transition of dynamic rheological responses of single cells: from fluid-like to solid-like.

Biophys J

September 2025

Laboratory for Multiscale Mechanics and Medical Science, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:

The mechanical properties of cells are crucial for elucidating various physiological and pathological processes. Cells are found to exhibit a universal power-law rheological behavior at low frequencies. While they behave in a different manner at high frequency regimes, which leaves the transition region largely unexplored.

View Article and Find Full Text PDF