98%
921
2 minutes
20
GM2 activator protein (GM2-AP) belongs to a small group of non- enzymatic lysosomal proteins that act as cofactors in the sequential degradation of gangliosides. It has been postulated that GM2-AP extracts single GM2 molecules from membranes and presents them in soluble form to beta-hexosaminidase A for cleavage of N-acetyl-d-galactosamine and conversion to GM3. The high affinity of GM2-AP for GM2 is based on specfic recognition of the oligosaccharide moiety as well as the ceramide lipid tail. Genetic defects in GM2-AP result in an atypical form of Tay-Sachs disease known as variant AB GM2 gangliosidosis. The 2.0 A resolution crystal structure of GM2-AP reported here reveals a previously unobserved fold whose main feature is an eight-stranded cup-shaped anti-parallel beta-pleated sheet. The striking feature of the GM2-AP structure is that it possesses an accessible central hydrophobic cavity rather than a buried hydrophobic core. The dimensions of this cavity (12 Ax14 Ax22 A) are suitable for binding 18-carbon lipid acyl chains. Flexible surface loops and a short alpha-helix decorate the mouth of the beta-cup and may control lipid entry to the cavity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/jmbi.2000.4225 | DOI Listing |
Langmuir
September 2025
Centre québécois sur les matériaux fonctionnels/Quebec Centre for Advanced Materials (CQMF/QCAM), Chemistry Department, 801 Sherbrooke St. W., Montreal, Québec H3A 0B8, Canada.
Poly(γ-stearyl-l-glutamate) (PSLG) is a semiflexible synthetic polypeptide that forms both thermotropic and lyotropic liquid crystal (LC) phases. We previously showed that spherical nanoparticles (NPs) decorated with another semiflexible helical polymer, poly(hexyl isocyanate), form lyotropic nematic rather than cubic LC phases. In this work, PSLG ligands for functionalizing 4 nm ZrO NPs were prepared via N-carboxyanhydride ring-opening polymerization.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Center of Materials and Nanotechnologies (CEMNAT), Faculty of Chemical Technology, University of Pardubice, nam. Cs legii 565, 530 02 Pardubice, Czech Republic.
Joint direct microscopy-calorimetry measurements of crystal growth were performed for a 60 nm amorphous Sb2S3 film deposited either on a Kapton foil or on a soda-lime glass. Calorimetric crystallization proceeded in two steps, originating either from mechanical and stress-induced defects (230-275 °C) or from homogeneously formed nuclei (255-310 °C); both processes exhibited an identical activation energy of 200 kJ mol-1. At temperatures <230 °C, a Sb2O3 crystalline phase formed along the rhombohedral Sb2S3 structure.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy.
The equilibration dynamics of ultrastable glasses subjected to heating protocols has attracted recent experimental and theoretical interest. With simulations of the mW water model, we investigate the devitrification and "melting" dynamics of both conventional quenched (QG) and vapor deposited (DG) amorphous ices under controlled heating ramps. By developing an algorithm to reconstruct hydrogen-bond networks, we show that bond ring statistics correlate with the structural stability of the glasses and allow tracking crystalline and liquid clusters during devitrification and melting.
View Article and Find Full Text PDFInorg Chem
September 2025
University of Houston, Department of Chemistry, Houston, Texas 77204-5003, United States.
Methanesulfonate salts have garnered interest as candidates for optical crystals; however, there are relatively little empirical data to thoroughly understand their structure-property relationships. Furthermore, there is only one trivalent main group methanesulfonate reported in the solid state, Al(HO)(SOCH). We report the synthesis and characterization of four new trivalent methanesulfonates, such as () Y(SOCH), () Bi(SOCH), () In(SOCH)(HO), and () SbO(OH)(SOCH).
View Article and Find Full Text PDFAdv Mater
September 2025
Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, China.
Sequential deposition technique is widely used to fabricate perovskite films with large grain size in perovskite solar cells (PSCs). Residual lead halide (PbI) in the perovskite film tends to be decomposed into metallic lead (Pb) under long-term heating or light soaking. Here, a chiral levetiracetam (LEV) dopant containing α-amide and pyrrolidone groups is introduced into the PbI precursor solution.
View Article and Find Full Text PDF